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Tentative programme 
09:00‒10:00: Concepts in experimental design. 
10:00‒10:45:  Orthogonal experimental design in R. 
10:45 ‒11:15: Morning tea 
11:15‒12:15: Nonorthogonal experimental design. 
12:15‒13:00: Nonorthogonal experimental design in R. 
13:00‒13:45: Lunch 
13:45‒14:15: Nonorthogonal experimental design in R (continued). 
14:15‒15:15: Advanced experimental design: multiphase and p-rep 

designs. 
15:15 ‒15:45: Afternoon tea 
15:45‒17:00: Using R for advanced experimental design. 
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Outline 
1. A paradigm for designing experiments. 
2. Experiment on a 5 x 5 grid of plots. 
3. Split-unit design. 
4. Summary of constructing orthogonal designs. 
5. Software and practical sessions. 
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1. A paradigm for designing experiments 
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Factor-
allocation 
diagram 

Anatomy of  
a design 

Initial  
allocation 

model 

Homogeneous 
allocation 

model 

Prior  
allocation 

model 

Anticipated 
model 

Design 
selection & 
construction 

Anticipated model determined in consultation 
with the researcher and based on anticipated 
behaviour in experimental situation. 

Select a design that 
is optimal for the 
anticipated model. 

The design specifies the allocation of a set of 
factors, the allocated factors, to a second set 
of factors, the recipient factors.  
Allocation is usually by randomization, but not 
always. 

Depicts the 
allocation. 

Shows the confounding 
and aliasing inherent in 
the design. 

Model derived from 
the allocation  
– should match the 
anticipated model. 

Modified versions of the initial 
allocation model. 

(Brien & Demétrio, 2009; 
Brien, 2017) 



Design optimality 

 For comparative experiments, A-optimality is the favoured optimality criterion. 
 The definition of A-optimality is that it minimizes the total variance of the predictions or 

Prediction Error Variance (PEV) (Kiefer, 1959) 
 The PEV is the same as the average variance of pairwise differences (AVPD): 

o when terms to be optimized (Treatments) are fixed; 

 Often fixed-model A-optimal designs are sought for comparative experiments: 
 All model terms are assume fixed, except the residuals. 

o Not just the treatments but blocks, row, columns and the like are fixed. 
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2. Experiment on a 5 x 5 grid of plots 
 Suppose have 25 plots arranged in a grid of 5 rows × 5 columns. 
 We want to assign 5 lines to the 25 plots. 
 What design to use? 
 Using the paradigm, we ask the question:  
 “what is the anticipated model?” 
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Case 1: row differences only 
 Suppose that the researcher says that they are confident that there 

will be row differences, but column differences are very unlikely. 
 That is, the anticipated model is Lines + Rows + Rows:Columns (units). 
 But, to formulate a model, it is necessary to identify the fixed and random terms? 

o Commonly, both Lines and Rows are fixed; Rows:Columns is random; i.e. a fixed-effects 
model is assumed. 

o The anticipated model becomes Lines + Rows | Rows:Columns  
(fixed terms are left of the ‘|’; the underline indicates an identity term). 

 What is the optimal design for this model? 
 It is known that a Randomized Complete Block (RCBD) is A-optimal for this 

model: 
 It minimizes the AVPD and so that is the design that will be used. 
 Of course, it is not usual to explicitly go through this process to choose a design for a situation 

as simple as this. 
 I argue that it is instructive to realize that choosing an optimal design for a model underscores 

what we usually do when designing an experiment. 7 



RCBD on a grid of plots 
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 For an RCBD: 
 Allocated (treatment) factor is Lines. 
 Recipient (unit) factors are Rows and Columns. 
 Each line is applied once and only once in each row. 
 Are Rows and Columns nested or crossed? 

o Given that Columns is not in the model, Rows is nested within 
Columns: 
 consistent differences between Columns across Rows are 

not anticipated; 
 instead variable differences within Rows are anticipated. 

 Thus, the order of the treatments is randomized within 
each row. 

 A method of achieving this randomization is: 
o take a systematic design for the allocated and recipient 

factors; 
o permute the recipient factors. 



Randomization by permutation of recipient factors 

        
Unit Blocks Units Treatments 

1 1 1 1 
2 1 2 2 
3 2 1 1 
4 2 2 2 
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 Permutations for an RCBD with b = 2, k = v = 2. 
 The allowable permutations are: 

 those that permute the blocks as a whole, and  
 those that permute the units within a block; 
 there are b!(k!)b = 2!(2!)2 = 8. 

          
Unit Blocks Units Treatments Permutation 

1 1 1 1 4 
2 1 2 2 3 
3 2 1 1 1 
4 2 2 2 2 

          Permuted 
unit Blocks Units Treatments Permutation Blocks Units 
1 1 1 1 4 2 2 
2 1 2 2 3 2 1 
3 2 1 1 1 1 1 
4 2 2 2 2 1 2 

 Equivalent to Treatments randomization 1, 2, 2, 1. 
 designRandomize implements this method of randomizing 

 The permuted Blocks and Units and the Treatments are put back into standard order. 



RCBD on a 5 x 5 grid of plots (cont’d) 
 What is its factor-allocation diagram for the design? 
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25 plots 

5 Rows 
5 Columns in R 

5 lines 

5 Lines 

 Two sets of objects (uncapitalized names) with associated 
factors (capitalized names):  
o Allocated objects: 5 lines;  
o Allocated factor indexes lines: {Lines}; 
o Recipient objects: 25 plots; 
o Recipient set of factors indexes plots: {Rows, Columns}. 

 Columns are nested within Rows in the anticipated model 
and so are permuted within Rows to randomize Lines. 

 This is in spite of the plots being in a grid, for which Rows 
and Columns are intrinsically crossed.  



Factor-allocation diagram for the RCBD (cont’d) 
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 One allocation (randomization):  
 a set of lines is allocated to a set of plots. 

 The set of factors belonging to a set of objects, i.e. in each panel, forms a tier: 
 they have the same status in the allocation (randomization): 

 allocated or recipient.  
 Textbook experiments are two-tiered:  
 The factor-allocation diagram shows the EU and restrictions on 

randomization/allocation. 

25 plots 

5 Rows 
5 Columns in R 

5 lines 

5 Lines 

Presenter
Presentation Notes
Randomization in this case
athletes and test are the EUs; restrictions are to Athletes in Months and Tests in M,A



How to use designRandomize to get a layout for an 
RCBD on 5 × 5 grid 

> b <- 5 
> t <- 5 
> RCBD.sys <- cbind(fac.gen(generate = list(Rows=b, Columns=t)), 
+                   fac.gen(generate = list(Lines = LETTERS[1:t]), times = b)) 
> RCBD.lay <- designRandomize(allocated         = RCBD.sys["Lines"],  
+                             recipient         = RCBD.sys[c("Rows", "Columns")], 
+                             nested.recipients = list(Columns = "Rows"), 
+                             seed              = 1134) 
> RCBD.lay 
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Lines is in a systematic order 
appropriate for an RCBD, consistent 
with the Rows-Columns order. 

Order of Rows then Columns in generate 
means that Columns will move faster than Rows.  

Note nesting of Columns 
within Rows. 

fac.gen is convenient because it produces a 
data.frame containing factors Rows and Columns 
and another with Lines; they are combined 

 There are many ways to approach this in R: 
 I chose to always start by creating a systematic data.frame to make the process more transparent. 

Presenter
Presentation Notes
The scripts for these examples are in dae/.tests



RCBD.lay    Rows Columns Lines 
1     1       1     C 
2     1       2     E 
3     1       3     A 
4     1       4     B 
5     1       5     D 
6     2       1     C 
7     2       2     A 
8     2       3     E 
9     2       4     D 
10    2       5     B 
11    3       1     E 
12    3       2     C 
13    3       3     B 
14    3       4     A 
15    3       5     D 
16    4       1     E 
17    4       2     A 
18    4       3     D 
19    4       4     B 
20    4       5     C 
21    5       1     D 
22    5       2     C 
23    5       3     B 
24    5       4     A 
25    5       5     E 13 

 This randomization 
results from the 
specified permutations. 
 Columns within Rows 
 Rows 



The initial allocation-based  
mixed model 
 This model is based on the factor allocation diagram. 

 Take all combinations of the factors within a tier, subject to the restriction that 
if a factor is nested within another then the nesting factor must always be 
included in terms involving it. 

 The allocated (treatment) terms derived from the allocation factors are 
designated as fixed. 

 The recipient (unit) terms derived from the recipient factors are designated as 
random. 
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25 plots 

5 Rows 
5 Columns in R 

5 lines 

5 Lines 

Lines | Rows + Rows:Columns 

 Because the allocation involved randomization, this model is equivalent to a 
randomization model (provided Rows is allowed to be negative). 

 This model and the anticipated model are different — here Rows is random. 
 The Rows terms could be moved to the fixed model to form a homogeneous 

allocation model, and this might become the prior allocation model. 



What do you need? 
 The tiers: the sets of factors in the panels. 

 plots tier: the recipient factors are {Rows, Columns}; 
 lines tier: the allocated factor is {Lines}. 

 The relationships between the factors within a tier. 
 Columns within Rows (given the allocation). 

 The layout for the experiment, but no response values. 
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What is the purpose? 
 To evaluate the design by establishing the confounding present in it. 
 Provides insight into the analysis of the experiments based upon it. 

25 plots 

5 Rows 
5 Columns in R 

5 lines 

5 Lines Anatomy of the design 

What do you get? 
 A table showing the confounding relationships between sources. 



Term versus source 
 A term represents the differences between the levels of a 

(generalized or joint) factor in a model. 
Mathematically it is of the form Xβ or Zu. 
 Its dimension is the number of columns of X or Z. 

o For example, factor Rows:Columns represents the difference between the 
combinations of Rows and Columns. 

o It has dimension bt : the ZRC matrix has bt columns. (The associated means projector 
ZRC(ZT

RC ZRC)-1 ZRC has dimension bt.)  
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Marginality relationships between terms 

 A property of the column spaces of the incidence matrices 
for the terms. 
One term is marginal to another if the column space of the first term is 

a subspace of that of the marginal term. 
 This property is independent of the replications of the levels of the 

factors that make up the term. 
 For example, the term for A is marginal to A:B irrespective of the 

number of values for each combination of the levels of A and B. 
When nesting is explicit, because nested factors are numbered within 

the nesting factors (e.g. Columns within Rows),  
o then a term is marginal to another if its factors are a subset of those in the 

marginal term (e.g. Rows is marginal to Rows:Columns). 
17 



Term versus source 
 A term represents the differences between the levels of a 

(generalized or joint) factor in a model. 
o For example, Rows:Columns has dimension bt,  being the number of columns in the matrix 

ZRC. (Also, the associated projector ZRC(ZT
RC ZRC)-1 ZRC has dimension bt.) 

 A source represents differences after marginal terms are 
eliminated. 
Mathematically it is characterized by the projection matrix, Q, that is 

the matrix of the quadratic form for its sum of squares, yTQy. 
 Its dimension is the rank of Q. 

o The source Columns[Rows] represents Rows:Columns differences, after the marginal Rows 
term has been eliminated, i.e. differences between Columns within Rows. 

o Its dimension is bt – b = (t – 1)b. 

 For each term in a model there is a source in the anatomy. 
18 



Notation for sources 
 When all factors and/or variables in a term are crossed,  

 They form an interaction, in which all are joined together with hashes (#),  
 e.g. A#B#C. 

 When there is nesting between factors and/or variables in a term,  
 the nested factors are placed first and joined by hashes, while the nesting 

factors are enclosed in square brackets ([…]) and joined by colons (:). 
 Rule for determining where factors occur in a source with nesting is: 

 only those factors in the term that nest any of the other factors must be in the 
square brackets joined by ‘:’;  

 the rest are put to the left of the square brackets joined by ‘#’. 
 e.g. A#B[C:D], where C and D nest one or more of A and B;  

here C:D indicates all observed combinations of C and D. 
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Anatomy of the design 
 An anatomy is based on the allocation (in a factor-allocation diagram). 

 A formula per panel with nesting in panel incorporated. 
 Shorthand  for terms (Wilkinson and Rogers, 1973): 

 A/B = A + A:B           (‘/’ is called the nesting operator) 
 A*B = A + B + A:B    (‘*’ is called the crossed operator) 

> RCBD.canon <- designAnatomy(formulae = list(plots = ~ Rows/Columns,  
+                                             lines = ~ Lines),  
+                             data = RCBD.lay)  
 The terms for each formula are transformed into sources by designAnatomy. 

 To do this, it works out the marginality relationships between terms. 
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25 plots 

5 Rows 
5 Columns in R 

5 lines 

5 Lines 



Anatomy of the design 

 Shows how Lines is confounded with the plots sources? 
> RCBD.canon <- designAnatomy(formulae = list(plots = ~ Rows/Columns,  
+                                             lines = ~ Lines),  
+                             data = RCBD.lay)  
> summary(RCBD.canon) 
  
Summary table of the decomposition for plots & lines 
 Source.plots df1 Source.lines df2 aefficiency eefficiency order  
 Rows           3  
 Columns[Rows] 20 Lines          4      1.0000      1.0000     1 
                  Residual      16  
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Lines is confounded with 
Columns[Rows] (as expected). 

The Residual measures differences between Columns 
within Rows. (not the interaction of Lines and Rows). 

All these 
are one and 
so design is 
orthogonal. 



How is it done? 
 Get the Mean projectors for terms in each  

tier (X[XTX]-1XT or Z (ZTZ)-1 ZT) : 
 Allocated tier: Mean, Lines; M0, ML

. 

 Recipient tier: Mean, Rows, Rows:Columns; M0, MR, MRC
. 
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 Form source projectors by orthogonalizing mean projectors for marginal terms: 
 Allocated tier: Mean, Lines; Q0 = M0, QL = ML

 − M0
. 

 Recipient tier: Mean, Rows, Columns[Rows]; P0 = M0, PR = MR
 − P0, QC[R] = PRC

 − Q0
 − QR

. 

 It can be shown that, for each tier, the source projectors are orthogonal. 
 Now investigate the relationship between all pairs of one lines source with one 

plot source: 
 that is, compare the lines source projector (QL) with plots source projectors (PR, PC[R]) through 

the nonzero eigenvalues of PQP products: 
o PRQLPR, which has all zero eigenvalues; 
o PC[R]QLPC[R], which has four eigenvalues all equal to one. 

 The eigenvalues are the canonical efficiency factors. 
 This information is summarized in the anatomy table. 



Canonical efficiency (eigenvalue) statistics 
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 A is the harmonic mean of the efficiency factors. 
 M is the arithmetic mean of the efficiency factors. 
 S is the variance of the efficiency factors. 
 X is the maximum of the efficiency factors. 
 E is the minimum of the efficiency factors. 
 Order is the number of unique efficiency factors. 
 DForthog is the number of efficiency factors equal to one. 



The three efficiency statistics are 
equal to one, indicating that all Lines 
information is confounded with 
Columns[Rows]. 

Anatomy of the design 

Summary table of the decomposition for plots & lines 
 Source.plots df1 Source.lines df2 aefficiency eefficiency order  
 Rows           3  
 Columns[Rows] 20 Lines          4      1.0000      1.0000     1 
                  Residual      16  
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25 plots 

5 Rows 
5 Columns in R 

5 lines 

5 Lines 

All eigenvalues between  Lines and Rows are zero so 
Lines is not confounded with Rows. 

There are four eigenvalues between  
Lines and Columns[Rows] that are 
equal to one. 

So there are 4 df for Lines confounded 
with Columns[Rows], i.e. all 4 df. 

The advantage of this design is that, because no Lines 
information is confounded with Rows, Rows differences 
will not contribute to the variability of Lines. 



Why anatomy? 

 Is it not just a skeleton anova table? 
 Yes, it is, but … 

 An anova is used to analyse data. 
 So a skeleton anova is showing you how the analysis of some data will look. 

 These days, I generally don’t do anovas– I mainly do mixed model 
analyses of data. 

 An anatomy is the analysis of a design, rather than of data. 
 It may be performed irrespective of the method to be used in analyzing the 

data. 
 Further, anatomies are based on the allocations for a design. 

 So to emphasize this distinction I refer to the anatomy of a design. 
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Case 2:  Row and Column differences probable 
 What is the anticipated model? 

 Anticipating row and column differences means that we should consider a 
model that includes Rows and Columns main effects. 

 Lines | Rows + Columns + Rows:Columns  
o (taking Rows and Columns to be random). 

 Need a design that is A-optimal for this model. 
 The Latin Square Design (LSD) is such a design. 
 It is A-optimal whether Rows or Columns are fixed or random. 

 Are Rows and Columns crossed or nested? Why? 
 Crossed because expect consistent differences between Rows (across 

Columns) and between Columns (across Rows) and this has been allowed for 
in the anticipated model. 

 In this case this is consistent with the intrinsic crossing of Rows and Columns. 
 It implies that Rows and Columns should be independently permuted. 26 



Factor allocation diagram for an LSD 

 Again, the initial allocation model consists of terms from all 
combinations of the factors in each panel, taking into account any 
nesting: 
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 ⊥ 

Columns is not nested in 
Rows. 

The allocation of Lines is now to 
combinations of Rows and Columns. 

An orthogonal design is 
used. 

25 plots 

5 Rows 
5 Columns in R 

5 lines 

5 Lines 

Lines | Rows + Columns + Rows:Columns 

 This model and the anticipated model are the same. 

25 plots 

5 Rows 
5 Columns 

recipient 

5 lines 

5 Lines 

allocated 



 Compare to RCBD 
> RCBD.sys <- cbind(fac.gen(list(Rows=b, Columns=t)), 
+                   fac.gen(generate = list(Lines = LETTERS[1:t]), times = b)) 
> RCBD.lay <- designRandomize(allocated         = RCBD.sys["Lines"],  
+                             recipient         = RCBD.sys[c("Rows", "Columns")], 
+                             nested.recipients = list(Columns = "Rows"), 
+                             seed = 1134) 

LSD on 5 × 5 grid using designRandomize and 
designLatinSqrSys 

b <- 5 
t <- 5 
> LSD.sys <- cbind(fac.gen(list(Rows=b, Columns=t)), 
+                  Lines = factor(designLatinSqrSys(t), labels = LETTERS[1:t])) 
> LSD.lay <- designRandomize(allocated         = LSD.sys["Lines"],  
+                            recipient         = LSD.sys[c("Rows", "Columns")],  
+                            seed              = 141) 
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> designLatinSqrSys(t)  
 [1] 1 2 3 4 5 2 3 4 5 1 3 4 5 1 2 4 5 1 2 3 5 1 2 3 4 

no nested.recipients, so 
Rows and Columns are crossed. 

Columns are permuted 
and Rows are permuted. 

Presenter
Presentation Notes
The scripts for these examples are in dae/.tests



LSD.lay    Rows Columns Lines 
1     1       1     C 
2     1       2     D 
3     1       3     B 
4     1       4     E 
5     1       5     A 
6     2       1     D 
7     2       2     E 
8     2       3     C 
9     2       4     A 
10    2       5     B 
11    3       1     E 
12    3       2     A 
13    3       3     D 
14    3       4     B 
15    3       5     C 
16    4       1     A 
17    4       2     B 
18    4       3     E 
19    4       4     C 
20    4       5     D 
21    5       1     B 
22    5       2     C 
23    5       3     A 
24    5       4     D 
25    5       5     E 29 

 This randomization results 
from the specified 
permutations. 
 Columns 
 Rows 



What sources and confounding? 

 The initial allocation model is: 
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Lines | Rows + Columns + Rows:Columns 

 There is a source for each term:  
 Allocated source: Lines; 
 Recipient sources: Rows, Columns, Rows#Columns. 

25 plots 

5 Rows 
5 Columns 

5 lines 

5 Lines  ⊥ 

 Treats will be confounded with which recipient (unit) sources? 
 Not with Rows or Columns; 
 With Rows#Columns. 

 

The interaction of Rows and 
Columns because both Rows 
and Columns in the model. 



Check properties using designAnatomy 
> LSD.canon <- designAnatomy(formulae = list(plots = ~ Rows*Columns,  
+                                            lines = ~ Lines), 
+                            data = LSD.lay) 
> summary(LSD.canon) 
 
 
Summary table of the decomposition for plots & lines 
 
 Source.plots df1 Source.lines df2 aefficiency eefficiency order 
 Rows           4                                                
 Columns        4                                                
 Rows#Columns  16 Lines          4      1.0000      1.0000     1 
                  Residual      12  
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Lines is confounded with only 
Rows#Columns. 

Reflects the factor-
allocation diagram 
— note the ‘*’. 



Comparing anatomies 
> RCBD.canon <- designAnatomy(formulae = list(plots = ~ Rows/Columns,  
+                                             lines = ~ Lines),  
+                             data = RCBD.lay)  
Source.plots df1 Source.lines df2 aefficiency eefficiency order  
 Rows           3  
 Columns[Rows] 20 Lines          4      1.0000      1.0000     1 
                  Residual      16  
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> LSD.canon <- designAnatomy(formulae = list(plots = ~ Rows*Columns,  
+                                            lines = ~ Lines), 
+                            data = LSD.lay) 
Source.plots df1 Source.lines df2 aefficiency eefficiency order 
 Rows           4                                                
 Columns        4                                                
 Rows#Columns  16 Lines          4      1.0000      1.0000     1 
                  Residual      12  

Columns within Rows includes Columns and so Residual has an extra 4 df — tradeoff. 



Recap of experiment on a 5 x 5 grid of plots 
 For 25 plots arranged in a grid of 5 rows × 5 columns: 

 Rows and Columns are intrinsically crossed. 
 But just because they are crossed there is no compunction to use a row-column 

design. The design could be any one of a: 
 Completely Randomized (CRD),  
 Randomized Complete Block (RCBD), or  
 Latin Square Design (LSD)? 

 Which depends on whether the researcher anticipates appreciable (i) row and/or 
(ii) columns differences. 
 The researcher’s assessment is encapsulated in the anticipated model. 

 We have seen how the anticipated model influences:  
 the nesting and crossing relationships between the recipient factors (Rows and Columns); 
 hence, the permutations that are appropriate for randomizing a design; and  
 the confounding that  results from the design. 
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3. Split-unit design 

 They involve more than one treatment factor and so are factorial experiments. 
 Designs in which main effects confounded with more variable units, such as 

large plots. 
 Their defining attribute is that there is randomization to two different physical 

entities such that some main effects are randomized to the more variable 
entities. 

 The standard split-unit design is one in which two factors, say A and B with 
a and b levels, respectively are assigned as follows: 
 one of the factors, A say, is randomized according to an RCBD with say r blocks and  
 each of the RCBD’s ra units, called the main units, is split into b subunits (or split-units) 

and levels of B randomized independently to the subunits in each main unit. Altogether the 
experiment involves n = rab subunits. 



Split-unit principle 
 Very flexible principle that can be used to generate a large number of different 

types of experiments.  
 For example, the main units could be arranged in any of a CRD, RCBD, Latin 

square, BIBD, Youden Square  
 each unit of the design is subdivided into subunits. 

 The subunits may utilize more complicated designs as well.  
 For example, the main units may be arranged in a RCBD each of which are subdivided in 

such a way as to allow a Latin Square to be placed in each main unit.  
 Also, subunits can be split into subsubunits and subsubunits into ...  
 Nor is one restricted to applying just one factor to each type of unit.  

 More than one factor can be randomized to main units, more than one to subunits and so 
on. 

 The standard split-unit design is nearly the simplest possibility; only a CRD in 
the main units would be simpler. 
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When to use a split-unit design 
1. When the physical attributes of a factor require the use of larger units of 

experimental material than other factors. 
2. When it is desired to incorporate an additional factor into an experiment. 
3. When it is expected that differences amongst the levels of certain factors 

are larger than amongst those of other factors. 
 The levels of the factors with larger differences are randomized to main units.  
 One effect of this may be to increase the precision of comparisons between the levels of 

the other factors.  
4. When it is desired to ensure greater precision between some factors as 

compared to other factors. 
 Irrespective of the size of the differences between the main unit treatment factors, it is 

desired to increase the precision of some factors by assigning them to subunits.  
 Note that the last two of these situations are utilising the anticipated greater 

variability of main units relative to subunits.  
 That is, we are expecting the larger units to be more variable than the smaller units.  
 Generally, we expect a term will have more variability than those to which it is marginal 

(e.g. Rows are more variables than Rows:Columns). 
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A standard athlete training experiment 

 9 training conditions to be investigated:  
 combinations of 3 surfaces and 3 intensities of training. 

 Testing is to be conducted over 4 Months:  
 In each month, 3 endurance athletes are to be recruited; 
Each athlete will undergo 3 tests, separated by 7 days, under 3 different 

training conditions.  
 On completion of each test, the athlete’s heart rate is measured. 
 Anticipated model, determined with the researcher:  
 Intensities + Surfaces + Intensities:Surfaces |  

Months + Months:Athletes + Months:Athletes:Tests.  
Consistent differences between Athletes across Months is unlikely because 

different athletes are involved each Month. 
Consistent differences between Tests across Athletes are not anticipated. 37 

Peeling et al. (2009) ; Brien, Harch, Correll, Bailey (2011) 
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Factor-allocation diagram for the standard 
athlete training experiment 
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 Assume the prime interest is in surface differences: 
 intensities are only included to observe the surfaces over a range of intensities. 

 Also expect variability of Months:Athletes to be greater than  
Months:Athletes:Tests 
 Months:Athletes is marginal to  Months:Athletes:Tests. 

 Use a split-unit design (as per situation 4). 
 Assign Surfaces to Tests so that Surfaces has greater precision . 

 Given the experimental set-up and the anticipated model, the tiers are as given in 
the following panels with the nesting relationships shown: 

3 Intensities 
3 Surfaces 

9 training conditions 

allocated 

4 Months 
3 Athletes in M 
3 Tests in M, A 

36 tests 

recipient 



Factor-allocation diagram for the standard 
athlete training experiment (cont’d) 
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3 Intensities 
3 Surfaces 

9 training conditions 

4 Months 
3 Athletes in M 
3 Tests in M, A 

36 tests 

 One allocation (randomization):  
 a set of training conditions is allocated to a set of tests using a single permutation of the tests. 
 The recipient tier is {Months, Athletes, Tests}; 
 The allocated tier is {Intensities, Surfaces}. 

 The initial allocation model is the same as the anticipated model. 
 Because all allocation is by randomization the initial allocation model is equivalent 

to a randomization model. 

Presenter
Presentation Notes
Randomization in this case
athletes and test are the EUs; restrictions are to Athletes in Months and Tests in M,A



A randomized layout using designRandomize 

> split.sys <- cbind(fac.gen(list(Months = 4, Athletes = 3, Tests = 3)), 
+                    fac.gen(list(Intensities = LETTERS[1:3], Surfaces = 3),  
+                            times = 4)) 
> split.lay <- designRandomize(allocated = split.sys[c("Intensities", "Surfaces")], 
+                              recipient = split.sys[c("Months", "Athletes", "Tests")],  
+                              nested.recipients = list(Athletes = "Months",  
+                                                       Tests = c("Months", "Athletes")), 
+                              seed = 2598) 
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Order of Months then Athletes 
then Tests means that Tests will 
change faster than Athletes, which 
will change faster than Months. 

Order of levels in allocated has 
to be consistent with recipient in 
order to get a split-unit design. 

Supplied to allocated 
is Intensities and 
Surfaces in a 
systematic order. 

Note nesting of Athletes and Tests, dictating that 
the permutation of Athletes will be within Months 
and that of Tests will be within Athletes. 

Similarly for Intensities 
and Surfaces. 

Presenter
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split.lay 
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 Intensities (A, B, C) line up with Athletes and  
 Surfaces (1,2,3) differ between Tests,  
 both in a random order. 

 
 With what will Intensities and Surfaces be confounded? 



Working out the confounding 

 Terms (omitting Mean): 
 Allocated: {Intensities, Surfaces, Intensities:Surfaces} 
 Recipient: {Months, Months:Athletes, Months:Athletes:Tests} 

 Sources projectors: 
 Allocated: {QI, QS, QI#S} 
 Recipient: {PM, PA[M], PT[M:A]} 

 For each P, calculate the PQP products for each of the three Qs and 
get their eigenvalues. 
 What values do you expect for the eigenvalues of PA[M]QIPA[M], PA[M]QSPA[M] 

and PA[M]QI#SPA[M]? (Hint: they are either 0 or 1.) 
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3 Intensities 
3 Surfaces 

9 training conditions 

4 Months 
3 Athletes in M 
3 Tests in M, A 

36 tests 



Using designAnatomy to summarize the confounding 
> split.canon <- designAnatomy(formulae = list(test = ~ Months/Athletes/Tests,  
+                                              cond = ~ Intensities*Surfaces),  
+                            data = split.lay) 
> summary(split.canon, which.criteria="none") 
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Summary table of the decomposition for tests & cond 
 
 Source.test            df1 Source.cond          df2 
 Months                   3                          
 Athletes[Months]         8 Intensities            2 
                            Residual               6 
 Tests[Months:Athletes]  24 Surfaces               2 
                            Intensities#Surfaces   4 
                            Residual              18 

Two formulae, with nesting and 
crossing corresponding to the factor 
allocation, and a data.frame. 

Intensities is 
confounded with 
Athletes[Months]. 

Surfaces and Intensities#Surfaces is 
confounded with Tests[Months:Athletes]. 

Primary division is according 
to tests sources. 



Prior allocation model 

 Probably the same as the initial allocation model, but with Months  
assumed fixed: 
 Months + Intensities + Surfaces + Intensities:Surfaces |  

Months:Athletes + Months:Athletes:Tests 
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Summary table of the decomposition for test & cond 
 
 Source.test            df1 Source.cond          df2 
 Months                   3                          
 Athletes[Months]         8 Intensities            2 
                            Residual               6 
 Tests[Months:Athletes]  24 Surfaces               2 
                            Intensities#Surfaces   4 
                            Residual              18 



4. Summary of constructing orthogonal designs 
 Straightforward, once the design to use has been chosen. 

 Form a systematic version of the design. 
 Randomize the systematic design, using some randomizing function(s). 
 Check the design. 

 This can all be done with dae functions: 
 designRandomize is a general randomizing function when recipient factors form a poset 

block structure. 
o the levels of all factor combinations, given the nesting relationships, must be equally replicated.  
o e.g. the number of observations (i) per block and (ii) for each Blocks:Plots combination in an RCBD must be equal 

for (i) all blocks and (ii) for all Blocks:Plots combinations. 
 designAnatomy can be used to check the properties of any design, irrespective of the 

nonorthogonality and the number of tiers. 
o Mistakes will result in nonorthogonality. 
o Slow when the number of observations is large (several hundreds). 

 For this, it is necessary to: 
 Divide factors based on allocation of factors (as well as fixed/random). 
 Identify the crossing and nesting, which depends not only on the innate relationships, but also 

the model needed to describe the anticipated variation. 45 



5. Software  
(Software and materials at https://tinyurl.com/BrienWorkshop) 

 R (3.6.x preferable) 
 Rstudio (optional) 
 Packages: 

 dae (Version 3.1-16 or later from CRAN or http://chris.brien.name/rpackages)  
 od (Version 2.0.0 from http://mmade.org)  

 
 dae: functions useful in the design and anova of experiments (84 

functions). 
 od: generates optimal experimental designs for comparative 

experiments  under a general linear mixed model. 
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dae: Functions to be used in this workshop 
ii. Factor manipulation functions 

 fac.gen: generate all combinations of several factors. 
 fac.recode: recodes the levels and values of a factor. 
 fac.combine: combines several factors into one. 

iii. Design functions 
 designLatinSqrSys: Generate a systematic plan for a Latin square design. 
 designRandomize: Takes a systematic design and randomizes it according to the nesting (and 

crossing) relationships between the recipient (unit) factors for the randomization. 
 designGGPlot: A graphical representation of an experimental design using labels stored in a 

data.frame using ggplot2. 
 designAnatomy: Given the layout for a design, produces a pcanon object containing its anatomy that 

shows the confounding and aliasing inherent in the design; obtained via the canonical analysis of the 
designs projectors. 

 summary.pcanon: Summarizes the anatomy of a design, being the decomposition of the sample 
space based on its canonical analysis, as produced by designAnatomy. The table produced includes 
the degrees of freedom and summary statistics of the canonical efficiency factors. 

 efficiencies.pcanon: Extracts the canonical efficiency factors from a pcanon.object produced 
by designAnatomy. 47 



od 

 od: generates optimal designs for comparative experiments under a 
general linear mixed model: 
 based on an anticipated mixed model and values for its variance parameters;  
 obtains a design that minimizes the average variance of pairwise differences (AVPD). 

 Functions that will be used: 
 od: Generates optimal designs for comparative experiments under a general linear mixed 

model. 
 od.options: Sets or displays various options that affect the behaviour of od. 

48 



Practical session for Orthogonal experimental 
design in R 

1. Using dae to obtain randomized layouts for orthogonal designs. 
i. RCBD and LSD 
ii. Split-unit design for an Oat experiment. 
iii. Split unit design for an pasture experiment. 

2. Except for the last example, you have only to follow the script that 
has been given. 

3. There are some questions for you to answer about each design 
(answers are in the solutions). 

49 
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