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09:00-10:00: Concepts in experimental design.
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15:45-17:00: Using R for advanced experimental design.
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1. A paradigm for designing experiments

(Brien & Demétrio, 2009;

Anticipated model determined in consultation Brien, 2017)
with the researcher and based on anticipated
Anticipated behaviour in experimental situation.
model Shows the confounding
and aliasing inherent in
l Anatomy of the design.
4 A a design
Design Factor-
selection & allocation
construction diagram » :
Initial Homogeneous Prior
\ 4 allocation allocation allocation
_Selec_t a design that Depicts the model model model
Is optimal for the allocation.
anticipated model. _
Model derived from Modified versions of the initial
The design specifies the allocation of a set of  the allocation allocation model.
factors, the allocated factors, to a second set — should match the
of factors, the recipient factors. anticipated model.

Allocation is usually by randomization, but not
always.



Design optimality

m For comparative experiments, A-optimality is the favoured optimality criterion.

The definition of A-optimality is that it minimizes the total variance of the predictions or
Prediction Error Variance (PEV) (Kiefer, 1959)

The PEV is the same as the average variance of pairwise differences (AVPD):
o when terms to be optimized (Treatments) are fixed;

m Often fixed-model A-optimal designs are sought for comparative experiments:

All model terms are assume fixed, except the residuals.
o Not just the treatments but blocks, row, columns and the like are fixed.



2. Experiment on a 5 x 5 grid of plots

m Suppose have 25 plots arranged in a grid of 5 rows x 5 columns.
m \We want to assign 5 lines to the 25 plots.
m What design to use?
m Using the paradigm, we ask the question:
“what Is the anticipated model?”



Case 1: row differences only

m Suppose that the researcher says that they are confident that there

will be row differences, but column differences are very unlikely.

That is, the anticipated model is Lines + Rows + Rows:Columns (units).
But, to formulate a model, it is necessary to identify the fixed and random terms?
o Commonly, both Lines and Rows are fixed; Rows:Columns is random; i.e. a fixed-effects

model is assumed.

o The anticipated model becomes Lines + Rows | Rows:Columns
(fixed terms are left of the ‘|'; the underline indicates an identity term).

m What is the optimal design for this model?
m It is known that a Randomized Complete Block (RCBD) is A-optimal for this

model:
It minimizes the AVPD and so that is the design that will be used.
Of course, it is not usual to explicitly go through this process to choose a design for a situation
as simple as this.
| argue that it is instructive to realize that choosing an optimal design for a model underscores
what we usually do when designing an experiment.
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RCBD on a grid of plots

m For an RCBD:

Allocated (treatment) factor is Lines.
Plot of Lines

Recipient (unit) factors are Rows and Columns.

Each line is applied once and only once in each row. 11 A B C
Are Rows and Columns nested or crossed?
o Given that Columns is not in the model, Rows is nested within 21 A B C
Columns:

consistent differences between Columns across Rows are
not anticipated;

instead variable differences within Rows are anticipated.
Thus, the order of the treatments is randomized within

Rows
)
>
0
O
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>
w
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each row.
_ . o 51 A B Cc
A method of achieving this randomization is: | . |
o take a systematic design for the allocated and recipient 1 2 3
factors; Columns

o permute the recipient factors.



Randomization by permutation of recipient factors

m Permutations foran RCBD withb =2, k=v = 2.

m The allowable permutations are:
those that permute the blocks as a whole, and

those that permute the units within a block;
there are bl(ke = 21(21)2 = 8.

N EDN PR
N EFEDN PR
N PP WS
P PPN

B WN PR
NN -
NEFEPEFEPDN

m Equivalent to Treatments randomization 1, 2, 2, 1.

m designRandomize implements this method of randomizing
The permuted Blocks and Units and the Treatments are put back into standard order.



RCBD on a5 x 5 grid of plots (cont'd)

m What is its factor-allocation diagram for the design?

5 Rows
[ 5Lines 5 Columns inR

5 lines 25 plots

Two sets of objects (uncapitalized names) with associated
factors (capitalized names):

o Allocated objects: 5 lines;

o Allocated factor indexes lines: {Lines};

o Recipient objects: 25 plots;

o Recipient set of factors indexes plots: {Rows, Columns}.

Columns are nested within Rows in the anticipated model
and so are permuted within Rows to randomize Lines.

This is In spite of the plots being in a grid, for which Rows
and Columns are intrinsically crossed.

Plot of Lines

C E A

C A E

E C B

E A D

D C B

1 2 3
Columns
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Factor-allocation diagram for the RCBD (cont’d)

5 Rows
[ 5Lines 5 Columns in R

5 lines 25 plots

m One allocation (randomization):
> aset of lines is allocated to a set of plots.
m The set of factors belonging to a set of objects, I.e. in each panel, forms a tier:
» they have the same status in the allocation (randomization):
> allocated or recipient.
m Textbook experiments are two-tiered:

m The factor-allocation diagram shows the EU and restrictions on
randomization/allocation.

11


Presenter
Presentation Notes
Randomization in this case
athletes and test are the EUs; restrictions are to Athletes in Months and Tests in M,A


~ How to use designRandomize to get a layout for an
RCBD on 5 x5 grid

m There are many ways to approach this in R:
| chose to always start by creating a systematic data.frame to make the process more transparent.

Order of Rows then Columns in generate
means that Columns will move faster than Rows.

fac.gen is convenient because it produces a

data. frame containing factors Rows and Columns Lines is in a systematic order
and another with Lines; they are combined appropriate for an RCBD, consistent
> b <-5 with the Rows-Collumns order.
>t <-5
> RCBD.sys <- cbind(fac.gen(generate = Iist(Rowggp,/CGTG;;;;t)),
+ fac.gen(generate = list(Linés = LETTERS[1:t]), times = b))
> RCBD.lay <- designRandomize(allocated = RCBD.sys[''Lines"],
+ recipient = RCBD.sys[c("'Rows", ""Columns')],
+ nested.recipients = list(Columns = "Rows"),
+ seed = 1134)
> RCBD. lay

Note nesting of Columns
within Rows. 12


Presenter
Presentation Notes
The scripts for these examples are in dae/.tests


RCBD - Iay Rows Columns Lines

Plot of Lines

"1Cc | E| A | B | D m This randomization

results from the

specified permutations.
Columns within Rows
Rows
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The |n|t|a| a||OCatIOﬂ-based [ 5Line54]—E5C05luRrr?xv:inRJ
mlxed mOdel 5 lines 25 plots

m This model is based on the factor allocation diagram.

Take all combinations of the factors within a tier, subject to the restriction that
If a factor is nested within another then the nesting factor must always be
Included in terms involving it.

The allocated (treatment) terms derived from the allocation factors are
designated as fixed.

The recipient (unit) terms derived from the recipient factors are designated as
random.

Lines | Rows + Rows:Columns

Because the allocation involved randomization, this model is equivalent to a
randomization model (provided Rows is allowed to be negative).

This model and the anticipated model are different — here Rows is random.

The Rows terms could be moved to the fixed model to form a homogeneous
allocation model, and this might become the prior allocation model. 14



[ 5Lines ) 5Columns inR

Anatomy of the design [ 5Rows J

-

What is the purpose? 5 lines 25 plots

m [0 evaluate the design by establishing the confounding present In it.
m Provides insight into the analysis of the experiments based upon it.

What do you need?

m The tiers: the sets of factors in the panels.
plots tier: the recipient factors are {Rows, Columns};
lines tier: the allocated factor is {Lines}.

m The relationships between the factors within a tier.
Columns within Rows (given the allocation).

m The layout for the experiment, but no response values.

What do you get?
m A table showing the confounding relationships between sources. 15




Term versus source

m A term represents the differences between the levels of a

(generalized or joint) factor in a model.
Mathematically it is of the form X or Zu.

Its dimension is the number of columns of X or Z.
o For example, factor Rows:Columns represents the difference between the
combinations of Rows and Columns.
o It has dimension bt : the Z,- matrix has bt columns. (The associated means projector

Zoc(ZTre Zre)?t Zgc has dimension bt.)

16



Marginality relationships between terms

m A property of the column spaces of the incidence matrices

for the terms.
One term is marginal to another if the column space of the first term is
a subspace of that of the marginal term.
This property is independent of the replications of the levels of the
factors that make up the term.
For example, the term for A is marginal to A:B irrespective of the
number of values for each combination of the levels of A and B.
When nesting is explicit, because nested factors are numbered within

the nesting factors (e.g. Columns within Rows),
o then a term is marginal to another Iif its factors are a subset of those Iin the
marginal term (e.g. Rows is marginal to Rows:Columns).

17



Term versus source

m A term represents the differences between the levels of a
(generalized or joint) factor in a model.

o For example, Rows:Columns has dimension bt, being the number of columns in the matrix
Zre- (Also, the associated projector Zgo(Z'wc Zre) ™t Zrc has dimension bt.)

m A source represents differences after marginal terms are

eliminated.
Mathematically it is characterized by the projection matrix, Q, that is
the matrix of the quadratic form for its sum of squares, y'Qy.

Its dimension Is the rank of Q.

o The source Columns[Rows] represents Rows:Columns differences, after the marginal Rows
term has been eliminated, i.e. differences between Columns within Rows.
o lts dimensionis bt—b = (t - 1)b.

m For each term in a model there Is a source In the anatomy.

18



Notation for sources

m \WWhen all factors and/or variables in a term are crossed,

They form an interaction, in which all are joined together with hashes (#),
e.g. A#B#C.

m \When there Is nesting between factors and/or variables in a term,

the nested factors are placed first and joined by hashes, while the nesting
factors are enclosed in square brackets ([...]) and joined by colons (:).

m Rule for determining where factors occur in a source with nesting Is:
only those factors in the term that nest any of the other factors must be in the
sqguare brackets joined by ‘’;
the rest are put to the left of the square brackets joined by ‘#'.

e.g. A#B[C:D], where C and D nest one or more of A and B;
here C:D indicates all observed combinations of C and D.

19



5 Rows
Anatomy of the design [ 5Lines 4—E5cmumns inR}

5 lines 25 plots
m An anatomy is based on the allocation (in a factor-allocation diagram).

A formula per panel with nesting in panel incorporated.

m Shorthand for terms (Wilkinson and Rogers, 1973):
AB=A+AB (‘" is called the nesting operator)

A*B=A+B +AB (" is called the crossed operator)
RCBD.canon <- designAnatomy(formulae = list(plots = ~ Rows/Columns,
lines = ~ Lines),
data = RCBD.lay)

The terms for each formula are transformed into sources by designAnatomy.
To do this, it works out the marginality relationships between terms.

"+ + V

20



Anatomy of the design

m Shows how Lines is confounded with the plots sources?

> RCBD.canon <- designAnatomy(formulae = list(plots = ~ Rows/Columns,

+ lines = ~ Lines),

+ data = RCBD. lay)

> summary(RCBD.canon)

Summary table of the decomposition for plots & lines All these
Source.plots dfl Source.lines df2 aefficiency eefficiency order are one and
ROWS 3 / so design is
Columns[Rows] 20 Lines 4 1.0000 1.0000 1] orthogonal.

‘&\\\\\////'Residual 16<$-.______--§§§
Lines is confounded with The Residual measures differences between Columns

Columns]Rows] (as expected). within Rows. (not the interaction of Lines and Rows).

21



L 1 0] 10 0 1
How Is it done? ; z
0 1 N

i i X, = M =iXX =| 2 ¢
m Getthe Mean projectors for termsineach .=y "M =2M™M =4 1 1 4
tier (X[XT™X]*XTor Z(Z72)1 Z7): .2t
Allocated tier: Mean, Lines; M,, M- 1 0] 2 00 7

Recipient tier: Mean, Rows, Rows:Columns; My, Mg, Mg

m Form source projectors by orthogonalizing mean projectors for marginal terms:
Allocated tier: Mean, Lines; Q,=M,, Q. =M, ~ M,
Recipient tier: Mean, Rows, Columns[Rows]; Py =My, Pgr = Mg~ Py, Qcr; = Prc ~ Qo ™ Qr
It can be shown that, for each tier, the source projectors are orthogonal.

m Now investigate the relationship between all pairs of one lines source with one
plot source:

that is, compare the lines source projector (Q ) with plots source projectors (Pg, Pg) through
the nonzero eigenvalues of PQP products:

o PrQ,Pgr, Which has all zero eigenvalues;

o PcrQLPcRry, Which has four eigenvalues all equal to one.

The eigenvalues are the canonical efficiency factors.
This information is summarized in the anatomy table. 22



Canonical efficiency (eigenvalue) statistics

m A is the harmonic mean of the efficiency factors.
m M is the arithmetic mean of the efficiency factors.

mSiIst
m XISt
mEiIst

ne variance of the efficiency factors.
ne maximum of the efficiency factors.

ne minimum of the efficiency factors.

m Order is the number of unique efficiency factors.

m DForthog is the number of efficiency factors equal to one.

23



Anatomy of the design (5 Cines 4—E5c§fﬂv§m}

5 lines 25 plots

All eigenvalues between Lines and Rows are zero so
Lines is not confounded with Rows.

Summary table of the decomposition for plots & lines
Source.plots dfl Source.lines df2 aefficiency eefficiency order

Rows 3
Columns[Rows] 20 Lines 4 1.0000 1.0000 1
Residual 6 \
The three efficiency statistics are

There are four eigenvalues between equal to one, indicating that all Lines
Lines and Columns[Rows] that are information is confounded with
equal to one. Columns[Rows].
So there are 4 df for Lines confounded The advantage of this design is that, because no Lines
with Columns]Rows], i.e. all 4 df. Information is confounded with Rows, Rows differences

will not contribute to the variability of Lines. o4



Why anatomy?

m Is it not just a skeleton anova table?
Yes, itis, but ...
m An anova is used to analyse data.
So a skeleton anova is showing you how the analysis of some data will look.

m These days, | generally don’t do anovas— | mainly do mixed model
analyses of data.

m An anatomy is the analysis of a design, rather than of data.

It may be performed irrespective of the method to be used in analyzing the
data.

Further, anatomies are based on the allocations for a design.
m S0 to emphasize this distinction | refer to the anatomy of a design.

25



Case 2. Row and Column differences probable

m What Is the anticipated model?

Anticipating row and column differences means that we should consider a
model that includes Rows and Columns main effects.

Lines | Rows + Columns + Rows:Columns
o (taking Rows and Columns to be random).

m Need a design that is A-optimal for this model.

The Latin Square Design (LSD) is such a design.
It is A-optimal whether Rows or Columns are fixed or random.

m Are Rows and Columns crossed or nested? Why?

Crossed because expect consistent differences between Rows (across
Columns) and between Columns (across Rows) and this has been allowed for
In the anticipated model.

In this case this is consistent with the intrinsic crossing of Rows and Columns.
It implies that Rows and Columns should be independently permuted. 26




Factor allocation diagram for an LSD

allocated recipient Columns is not nested in
: 5 Rows Rows.
[ 5lLines
N 5 Columns 5 Rows
£ | [ 5Lines 5 Columns inR
Ine 25 plots
5 lines 25 plots
An orthogonal design is The allocation of Lines is now to
used. combinations of Rows and Columns.

m Again, the initial allocation model consists of terms from all
combinations of the factors in each panel, taking into account any
nesting:

Lines | Rows + Columns + Rows:Columns

This model and the anticipated model are the same.

27



S
LSD on 5 x 5 grid using designRandomize and
designLatinSgrSys

> designLatinSqrSys(t)
[1]1 1234523451345 124512351234

b <-5

t <- 5 ‘(////

> LSD.sys <- cbind(fac.gen(list(Rows=b, Columns=t)),

Lines = factor(designLatinSqgrSys(t), labels = LETTERS[1:t]))

LSD.lay <- designRandomize(allocated LSD.sys["Lines"],

+ + VvV +

recipient = LSD.sys[c("Rows", "Columns™)],
seed = 141)
no nested.recipients, so Columns are permuted
Rows and Columns are crossed. and Rows are permuted.

m Compare to RCBD

> RCBD.sys <- cbind(fac.gen(list(Rows=b, Columns=t)),

+ fac.gen(generate = list(Lines = LETTERS[1:t]), times = b))

> RCBD.lay <- designRandomize(allocated RCBD.sys|[''Lines"],

+ recipient RCBD.sys[c('Rows"™, "Columns™)],
nested.recipients list(Columns = "Rows"),
seed = 1134) 8

+
+



Presenter
Presentation Notes
The scripts for these examples are in dae/.tests


LSD _ Iay Rows Columns Lines

1 1 1 C

2 1 2 D

3 1 3 B

4 1 4 E

Plot of Lines 5 1 5 A
6 2 1 D

1 C A I 2 2 E
8 2 3 C

9 2 4 A

21 D B | 3 2 : A
0 11 3 1 E
5 3 12 3 2 A
:%3 E C 12 3 2 D
14 3 4 B

4- A D 15 3 5 C
16 4 1 A

17 4 2 B

LB E 18 4 3 c
' 19 4 4 C

1 20 4 5 D
Columns 21 c X -

22 5 2 C

5 4 D

5 5 E

m This randomization results
from the specified
permutations.

Columns
Rows

29



What sources and confounding?

) } :F 5 Rows 21
[ > Lines 5 Columns }

5 lines 25 plots

m The initial allocation model is:

Lines | Rows + Columns + Rows:Columns

m There Is a source for each term:
Allocated source: Lines:
Recipient sources: Rows, Columns, Rows#Columns.

Plot of Lines

C A
D B
E C
A D
B E
1 5

The interaction of Rows and
Columns because both Rows
and Columns in the model.

m Treats will be confounded with which recipient (unit) sources?

Not with Rows or Columns:
With Rows#Columns.

30



Check properties using designAnatomy

> LSD.canon <- designAnatomy(formulae = list(plots = ~ Rows*Columns,
-+ lines = ~ Lines),\\

+ data = LSD.lay) \\\
> summary(LSD.canon)

Reflects the factor-
allocation diagram

- l*!
Summary table of the decomposition for plots & lines note the ™.

Source.plots dfl Source.lines df2 aefficiency eefficiency order
Rows 4
Columns 4
Rows#Columns 16 Lines 4 1.0000 1.0000 1

Residual 12 v\\\\\

Lines is confounded with only
Rows#Columns.

31



Comparing anatomies

> RCBD.canon <- designAnatomy(formulae = list(plots = ~ Rows/Columns,
+ lines = ~ Lines),

+ data = RCBD.lay)

Source.plots dfl Source.lines df2 aefficiency eefficiency order

Rows 3
Columns[Rows] 20 Lines 41\ 1.0000 1.0000 1

T Residual 16

Columns within Rows includes Columns and so Residual has an extra 4 df — tradeoff.

> LSD.canon <- design

atomy(formulae = list(plots = ~ Rows*Columns,

+ lines ~ Lines),
+ data = LSD.lay)
Source.plots 1 Source.lines df2 aefficiency eefficiency order
Rows 4
Columns 4
Rows#Columns 16 Lines 4 1.0000 1.0000 1

Residual 12

32




Recap of experiment on a5 x 5 grid of plots

m For 25 plots arranged in a grid of 5 rows x 5 columns:
Rows and Columns are intrinsically crossed.

m But just because they are crossed there is no compunction to use a row-column
design. The design could be any one of a:
Completely Randomized (CRD),
Randomized Complete Block (RCBD), or
Latin Square Design (LSD)?

m \Which depends on whether the researcher anticipates appreciable (i) row and/or

(i) columns differences.
The researcher’s assessment is encapsulated in the anticipated model.

m \We have seen how the anticipated model influences:
the nesting and crossing relationships between the recipient factors (Rows and Columns);
hence, the permutations that are appropriate for randomizing a design; and

the confounding that results from the design.
33



3. Split-unit design

m They involve more than one treatment factor and so are factorial experiments.

m Designs in which main effects confounded with more variable units, such as
large plots.

m Their defining attribute is that there is randomization to two different physical
entities such that some main effects are randomized to the more variable
entities.

m The standard split-unit design is one in which two factors, say A and B with
a and b levels, respectively are assigned as follows:
one of the factors, A say, is randomized according to an RCBD with say r blocks and

each of the RCBD'’s ra units, called the main units, is split into b subunits (or split-units)
and levels of B randomized independently to the subunits in each main unit. Altogether the
experiment involves n = rab subunits.

34



Split-unit principle

Very flexible principle that can be used to generate a large number of different
types of experiments.

For example, the main units could be arranged in any of a CRD, RCBD, Latin
square, BIBD, Youden Square
each unit of the design is subdivided into subunits.

The subunits may utilize more complicated designs as well.

For example, the main units may be arranged in a RCBD each of which are subdivided in
such a way as to allow a Latin Square to be placed in each main unit.

Also, subunits can be split into subsubunits and subsubunits into ...

Nor Is one restricted to applying just one factor to each type of unit.

More than one factor can be randomized to main units, more than one to subunits and so
on.

The standard split-unit design is nearly the simplest possibility; only a CRD in
the main units would be simpler.

35



When to use a split-unit design

1. When the physical attributes of a factor require the use of larger units of
experimental material than other factors.

2. When it is desired to incorporate an additional factor into an experiment.

When it is expected that differences amongst the levels of certain factors
are larger than amongst those of other factors.
The levels of the factors with larger differences are randomized to main units.

One effect of this may be to increase the precision of comparisons between the levels of
the other factors.

4. When it is desired to ensure greater precision between some factors as
compared to other factors.

Irrespective of the size of the differences between the main unit treatment factors, it is
desired to increase the precision of some factors by assigning them to subunits.

m Note that the last two of these situations are utilising the anticipated greater
variability of main units relative to subunits.
That is, we are expecting the larger units to be more variable than the smaller units.

Generally, we expect a term will have more variability than those to which it is marginal

(e.g. Rows are more variables than Rows:Columns).
36



A standard athlete training experiment
Peeling et al. (2009) ; Brien, Harch, Correll, Bailey (2011)

m 9 training conditions to be investigated:
combinations of 3 surfaces and 3 intensities of training.

m Testing is to be conducted over 4 Months:
In each month, 3 endurance athletes are to be recruited,;
Each athlete will undergo 3 tests, separated by 7 days, under 3 different
training conditions.

m On completion of each test, the athlete’s heart rate iIs measured.

m Anticipated model, determined with the researcher:

Intensities + Surfaces + Intensities:Surfaces |
Months + Months:Athletes + Months:Athletes:Tests.

Consistent differences between Athletes across Months is unlikely because
different athletes are involved each Month.

Consistent differences between Tests across Athletes are not anticipated. 37



Presenter
Presentation Notes
Split-unit = Split-plot


Factor-allocation diagram for the standard

athlete training experiment

m Given the experimental set-up and the anticipated model, the tiers are as given in
the following panels with the nesting relationships shown:

allocated recipient
/
N 4 Months
3 Intensities »3 Athletes in M
3 Surfaces ] k>3 Tests in M, A
9 training conditions 36 tests

m Assume the prime interest is in surface differences:
» intensities are only included to observe the surfaces over a range of intensities.

m Also expect variability of Months:Athletes to be greater than
Months:Athletes:Tests

» Months:Athletes is marginal to Months:Athletes:Tests.
m Use a split-unit design (as per situation 4).
» Assign Surfaces to Tests so that Surfaces has greater precision . 38



Factor-allocation diagram for the standard
athlete training experiment (cont'd)

p
N 4 Months

3 Intensities »3 Athletes in M

3 Surfaces ] \'3 Tests in M, A

9 training conditions 36 tests

m One allocation (randomization):
> a set of training conditions is allocated to a set of tests using a single permutation of the tests.
» The recipient tier is {Months, Athletes, Tests};
» The allocated tier is {Intensities, Surfaces}.

m The initial allocation model is the same as the anticipated model.

m Because all allocation is by randomization the initial allocation model is equivalent
to a randomization model.

39


Presenter
Presentation Notes
Randomization in this case
athletes and test are the EUs; restrictions are to Athletes in Months and Tests in M,A


A randomized layout using designRandomize

Order of Months then Athlletes

then Tests means that Tests will o L Supplied to al located

change faster than Athletes, which ~ Similarly for Intensities is Intensities and

will change faster than Months. and Surfaces. Surfaces in a
systematic order.

> split.sys <- cbind(fac.gen(list(Months = 4, Athletes = 3, Tests = 3)),

+ fac.gen(list(Intensities = LETTERS[1:3], Surfaces = 3),

+ times = 4))

> split.lay <- designRandomize(allocated = split.sys[c("Intensities", "Surfaces")],

+ ecipient = split.sys[c("Months", "Athletes', "Tests")],

+ ested.recipients = list(Athletes = ""Months",

+ Tests = c("'Months", "Athletes™)),

+ seed = 2598) \
Order of levels in al located has Note nesting of Athletes and Tests, dictating that
to be consistent with recipientin the permutation of Athletes will be within Months

order to get a split-unit design. and that of Tests will be within Athletes. .


Presenter
Presentation Notes
The scripts for these examples are in dae/.tests


Plot of Conditions

Tests
[ =]

Sp I I t - I ay Months: 1 Months: 2 Months: 3 Months: 4
11 B3 | C2 | A1 B.1 | A3 C,1 B.1 C.2 | A2 A3 B,1 C,1
1B2 ) CA A2 B.2 | A2 C,3 B3 J C3 | A3 A2 | B2 | C3
31 B,1 C3 | A3 B,3 | A1 C,2 B,2 | C1 ]| A1 A1 B3 | C.2

1 2 3 1 2 3 1 2 3
Athletes

Intensities (A, B, C) line up with Athletes and
Surfaces (1,2,3) differ between Tests,
both in a random order.

m With what will Intensities and Surfaces be confounded?

41



Working out the confounding

-
N 4 Months
3 Intensities »3 Athletesin M
3 Surfaces ] \»3 Tests in M, A
9 training conditions 36 tests

m Terms (omitting Mean):
Allocated: {Intensities, Surfaces, Intensities:Surfaces}
Recipient: {Months, Months:Athletes, Months:Athletes: Tests}
m Sources projectors:

Allocated: {Q,, Qs, Qus}
Recipient: {Py, Panp Proviag)

m For each P, calculate the PQP products for each of the three Qs and
get their eigenvalues.

What values do you expect for the eigenvalues of PpnQ\Papy: PaiQsPapvy
and PpQusPav? (Hint: they are either O or 1.) a2



Using designAnatomy to summarize the confounding

~ Months/Athletes/Tests,
~ Intensities*Surfaces),

split.canon <- designAnatomy(formulae = list(test
cond

data = split.lay)
summary(split.canon, which.criteria="none) Two formulae, with nesting and

crossing corresponding to the factor

Primary division is according allocation, and a data. frame.
to tests sources.

vV + + V

Summary table of the decomposition for tests & cond
Intensitiesis

Source.test dfl Source.cond df2 confounded with
Months 3 ‘(’///’Athletes[Months].
Athletes[Months] 8 Intensities 2

Residual 6
Tests[Months:Athletes] 24 Surfaces 2

Intensities#Surfaces 4

Resitdual 18 .‘\\‘\\\\

Surfaces and Intensities#Surfaces is

confounded with Tests[Months:Athletes].
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Prior allocation model

Summary table of the decomposition for test & cond

Source.test dfl Source.cond df2

Months 3

Athletes[Months] 8 Intensities 2
Residual 6

Tests[Months:Athletes] 24 Surfaces 2
Intensities#Surfaces 4
Residual 18

m Probably the same as the initial allocation model, but with Months

assumed fixed:
Months + Intensities + Surfaces + Intensities:Surfaces |
Months:Athletes + Months:Athletes:Tests
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4. Summary of constructing orthogonal designs

m Straightforward, once the design to use has been chosen.
Form a systematic version of the design.
Randomize the systematic design, using some randomizing function(s).
Check the design.

m This can all be done with dae functions:

designRandomize is a general randomizing function when recipient factors form a poset

block structure.
o the levels of all factor combinations, given the nesting relationships, must be equally replicated.
o e.g. the number of observations (i) per block and (ii) for each Blocks:Plots combination in an RCBD must be equal
for (i) all blocks and (ii) for all Blocks:Plots combinations.

designAnatomy can be used to check the properties of any design, irrespective of the

nonorthogonality and the number of tiers.
o Mistakes will result in nonorthogonality.
o Slow when the number of observations is large (several hundreds).

m For this, it is necessary to:
Divide factors based on allocation of factors (as well as fixed/random).

|dentify the crossing and nesting, which depends not only on the innate relationships, but also
the model needed to describe the anticipated variation. 45



5. Software
(Software and materials at https://tinyurl.com/BrienWorkshop)

m R (3.6.x preferable)
m Rstudio (optional)

m Packages:
dae (Version 3.1-16 or later from CRAN or http://chris.brien.name/rpackages)
od (Version 2.0.0 from http://mmade.org)

m dae: functions useful in the design and anova of experiments (84
functions).

m 0d: generates optimal experimental designs for comparative
experiments under a general linear mixed model.
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dae: Functions to be used in this workshop

Il. Factor manipulation functions

fac.gen: generate all combinations of several factors.
fac.recode: recodes the levels and values of a factor.
fac.combine: combines several factors into one.

lii. Design functions

designLatinSgrSys: Generate a systematic plan for a Latin square design.

designRandomize: Takes a systematic design and randomizes it according to the nesting (and
crossing) relationships between the recipient (unit) factors for the randomization.
designGGPlot: A graphical representation of an experimental design using labels stored in a
data.frame using ggplot2.

designAnatomy: Given the layout for a design, produces a pcanon object containing its anatomy that
shows the confounding and aliasing inherent in the design; obtained via the canonical analysis of the
designs projectors.

summary.pcanon: Summarizes the anatomy of a design, being the decomposition of the sample
space based on its canonical analysis, as produced by designAnatomy. The table produced includes
the degrees of freedom and summary statistics of the canonical efficiency factors.

efficiencies.pcanon: Extracts the canonical efficiency factors from a pcanon.object produced

by designAnatomy. 47



od

m 0d: generates optimal designs for comparative experiments under a

general linear mixed model:

based on an anticipated mixed model and values for its variance parameters;
obtains a design that minimizes the average variance of pairwise differences (AVPD).

m Functions that will be used:

od: Generates optimal designs for comparative experiments under a general linear mixed
model.

od.options: Sets or displays various options that affect the behaviour of od.
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Practical session for Orthogonal experimental
design in R

1. Using dae to obtain randomized layouts for orthogonal designs.

RCBD and LSD
Split-unit design for an Oat experiment.
Split unit design for an pasture experiment.

2. Except for the last example, you have only to follow the script that
has been given.

3. There are some questions for you to answer about each design
(answers are In the solutions).
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