
Designing comparative 
experiments using R 
(Chris Brien and Sam Rogers) 

II. Nonorthogonal experimental design 



Outline 

1. Designing nonorthogonal experiments and the alphabet of 
efficiency measures. 

2. Using the concepts for balanced designs. 
3. Using the concepts for unbalanced designs. 

a. A partially balanced incomplete-block design  
b. A wheat experiment from Gilmour et al. (1995) 
c. A plant accelerator design 

4. Summary of constructing nonorthogonal designs. 
5. What happens when there is missing data? 
6. Systematic allocation and pseudoreplication. 
7. Summary of confounding and aliasing. 
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Recall the paradigm for designing experiments  
(Brien, 2017) 
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1. Designing nonorthogonal experiments 

 For nonorthogonal experiments, getting the initial systematic design 
is generally more difficult than for orthogonal experiments. 
 Cannot just deploy a standard known design; 
 Will demonstrate a number of approaches. 

 Our dae friends, designRandomize and designAnatomy, play the 
same role as for orthogonal experiments.  
(designRandomize is not used for spatial designs.) 

 How do we know that the design that we have is good? 
 Design optimality is the answer. 
 There is A-, D-, C-, E-, G-, M- and S-optimality. Which one? 
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Design optimality 
 For comparative experiments, A-optimality is the favoured optimality criterion. 

 The definition of A-optimality is that it minimizes the total variance of the predictions or 
Prediction Error Variance (PEV) (Kiefer, 1959) 

 The PEV is the same as the average variance of pairwise differences (AVPD): 
o when terms to be optimized (e.g. Treatments) are fixed; 
o not when the terms to be optimized are random. 
o when the residual model is not iid i.e. correlated residuals are OK. 

 Often suggested that minimum AVPD is the criterion of choice for comparative 
experiments. 
 So they will be A-optimal if the terms to be optimized are fixed; 
 But what if the terms to be optimized are random? 

o Is AVPD appropriate for random factors? 
o Given the effects are random, conducting inference on a pair of differences is not meaningful. 
o So PEV seems a reasonable measure, but it is not the same as AVPD; nonetheless AVPD is used. 

 As previously mentioned, often fixed-model A-optimal designs are sought for 
comparative experiments: 
 All model terms are assume fixed, except the residuals. 5 



2. Using the concepts for balanced designs 
 Suppose have 20 plots arranged in a grid of 4 rows × 5 columns. 
 We want to assign 5 lines to the 20 plots. 
 Again, what design to use? 

 Completely Randomized CRD,  
 Randomized Complete or Incomplete Block (RCBD or IBD), or  
 Youden Square Design (YSD) (an LSD is impossible)? 

 Already know that, irrespective of the design: 
 the unit factors are Rows, Columns and the treatment factor is Lines. 

 Suppose that Row and Column differences are probable. 
 What is the anticipated model? 
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 Lines + Rows + Columns | Rows:Columns — same as for an LSD 



2(a) Row and Column differences likely in 4 x 5 grid 
 Need a design that allows for Row and Column main effects. 

 Are Rows and Columns crossed or nested? Why? 
o Crossed because expect consistent differences between Rows and between Columns. 

 YSD is a design that is optimal for this model: 
 Construct by taking a Latin square and omitting a row. 

 Use of designRandomize (and designLatinSqrSys) to get a design: 
b <- 4 
t <- 5 
> #'## Construct a systematic layout and obtain the randomized layout 
> YSD.sys <- cbind(fac.gen(list(Rows=b, Columns=t)), 
+                  Lines = factor(designLatinSqrSys(t)[1:(b*t)], labels = LETTERS[1:t])) 
> YSD.lay <- designRandomize(allocated = YSD.sys["Lines"],  
+                            recipient = YSD.sys[c("Rows", "Columns")],  
+                            seed      = 95332) 
> #'## Output the layout 
> YSD.lay 
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Extract column subsets 
of data.frames. 

Generate Latin square, 
but take only first 20 of 
25 values (4 rows x 5 
columns). 



YSD.lay 
   Rows Columns Lines 
1     1       1     C 
2     1       2     D 
3     1       3     A 
4     1       4     B 
5     1       5     E 
6     2       1     A 
7     2       2     B 
8     2       3     D 
9     2       4     E 
10    2       5     C 
11    3       1     E 
12    3       2     A 
13    3       3     C 
14    3       4     D 
15    3       5     B 
16    4       1     D 
17    4       2     E 
18    4       3     B 
19    4       4     C 
20    4       5     A 8 



The initial allocation-based mixed model 

 From the factor allocation diagram, the initial allocation model is: 
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Lines | Rows + Columns + Rows:Columns 

 This model and the anticipated model are different — here Rows and Columns 
are random. 

 The Rows and Columns terms could be moved to the fixed model to form a 
homogeneous allocation model,  
o which in turn may become the prior allocation model. 

20 plots 

4 Rows 
5 Columns 

5 lines 

5 Lines  

 The factor allocation diagram is: 
 



Working out the confounding 

 What are the recipient (unit) sources? 
 Rows, Columns & Rows#Columns 

 Lines will be confounded with which  
recipient (unit) sources? 
 With Columns & Rows#Columns (cf. LSD). 

 Can determine this by investigating the relationships between two 
sets of projectors, those for lines and those for plots: 
 one source projector for each term in the initial allocation model; 
 {QL} and {PR, PC, PR#C}. 

 Require the eigenvalues of PQLP for all 3 Ps. 
 They are calculated and statistical summaries of them are tabulated 

by designAnatomy. 10 

20 plots 

4 Rows 
5 Columns 

5 lines 

5 Lines  



Check properties using designAnatomy 
> YSD.canon <- designAnatomy(formulae = list(plots = ~ Rows*Columns,  
+                                            lines = ~ Lines), 
+                            data     = YSD.lay) 
> summary(YSD.canon) 
 
Summary table of the decomposition for plots & lines (based on adjusted 
quantities) 
 
 Source.plots df1 Source.lines df2 aefficiency eefficiency order 
 Rows           3                                                
 Columns        4 Lines          4      0.0625      0.0625     1 
 Rows#Columns  12 Lines          4      0.9375      0.9375     1 
                  Residual       8                               
 
The design is not orthogonal 
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but the order is one and 
so the design is balanced 

For the first time,  
 Lines occurs twice in an analysis;  
 neither the aefficiency nor the eefficiency are 1; 
 Lines is partially confounded with two sources. 



The design’s properties 
Summary table of the decomposition for plots & lines (based on adjusted 
quantities) 
 
 Source.plots df1 Source.lines df2 aefficiency eefficiency order 
 Rows           3                                                
 Columns        4 Lines          4      0.0625      0.0625     1 
 Rows#Columns  12 Lines          4      0.9375      0.9375     1 
                  Residual       8                               
 
The design is not orthogonal 
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 Thus there are 4 nonzero eigenvalues for PCQLPC and 
for PRCQLPRC: 
 For PCQLPC, all are 0.0625 (1/16); 
 For PRCQLPRC, all are 0.9375 (15/16); 
 Being 1st-order balanced, the efficiencies sum to 1. 

 15/16 of the information for Lines is confounded with 
Rows#Columns. 
 Generally, prefer the intrablock or intrarow-

intracolumn efficiency to be greater than, say, 0.75. 

 All 4 df for Lines are confounded 
with both Columns and 
Rows#Columns;  

 None are confounded with Rows. 



To combine or not combine information? 
 Lines, being confounded with Columns and with Rows#Columns, 

there are available two estimates of the Lines effects: 
 It is expected that those estimated from Columns differences would have 

greater variability than those estimated from Rows#Columns. Why? 

 Should these two sets of estimates be combined? 
 In this case, not a lot would be lost by relying on the intrarow-intracolumn 

estimates: actually, only 1/16 of the information. 
 The advantage is that the more variable inter-column estimates do not 

contaminate the less variable intrarow-intracolumn estimates. 
 In the context of mixed modelling,  

 The combined estimates are produced when Columns is random. 
 The intrarow-intracolumn estimates are produced when Columns is fixed. 
 That is, in deciding whether Columns is fixed or random, consider whether 

intrablock or combined estimates of Lines are required. 13 



What if you don’t know what design to use here? 
 Look up Cochran and Cox (1957) [C&C] – but they are called incomplete Latin 

squares, or use agicolae (De Mendiburu, 2019).  
 However, you have to know what you the design that you need. 

 Use computer searching: CycDesigN, SAS or od. 
 Both the standalone software CycDesigN and the R package od (Butler, 2019) search for a 

design that minimizes the average variance of pairwise differences (AVPD). 
o CycDesigN searches for fixed-model A-optimal designs; 
o od searches for mixed-model A-optimal designs; 

 Provided the terms being optimized (treatments) are fixed, these designs are A-optimal 
because the AVPD equals the PEV. 
o Otherwise, they may not be A-optimal. 

 The harmonic mean of the efficiency factors, the A-efficiency, is proportional to the PEV when 
the only random term is the residual (or identity) term. 

 SAS searches for a D-optimal design. 
o Minimizes the volume of the confidence ellipsoid of estimates (not necessarily A-optimal). 
o The product of the reciprocals of the efficiency factors is minimized. 
o D-optimal designs are used when response curve parameters are to be estimated. 14 



Using od to obtain an optimal design 
 The od function has the following arguments: 

 fixed, random and residual are formulae for specifying the mixed model. 
 permute is a formula with a single term that is to be optimized by swapping 

values for the term between rows of its design matrix. 
 swap is a formula for specifying a term for restricting the permutes to be within 

its levels. 
 search specifying a search strategy: random, tabu (records rejected 

designs), randomwalk (as for random, but accepts a non-improving design 
with proability P) and tabu+rw (combined). 

 maxit gives the number of tabu loops or random interchanges. 
 start.values allows one to specify the values of variance parameters, 

without beginning a search. 
 data is a data.frame containing an initial design (obligatory as used to resolve 

terms in formulae). 15 



Using od to obtain an optimal 4 x 5 grid design 
> #'### Initialize with a randomized RCBD layout  
> R4C5.ini <- cbind(fac.gen(list(Rows=b, Columns=t)), 
+                   Lines = factor(rep(1:t, times = b), labels = LETTERS[1:t])) 
> R4C5.ini <- designRandomize(allocated         = R4C5.ini["Lines"],  
+                             recipient         = R4C5.ini[c("Rows", "Columns")],  
+                             nested.recipients = list(Columns = "Rows"), 
+                             seed              = 7851) 
> #'### Get the od design 
> R4C5.od <- od(fixed   = ~ Rows + Columns + Lines, 
+               permute = ~ Lines,  
+               search  = "tabu", maxit = 25, 
+               data    = R4C5.ini) 
Done set up; elapsed =   0.00 
Initial A-value = 0.952475 (5 A-equations; rank C 4) 
A-value after tabu loop 1 is 0.569492 
A-value after tabu loop 2 is 0.558333 
A-value after tabu loop 3 is 0.533333 
... 
A-value after tabu loop 25 is 0.533333 
Hash table size 30 
Final A-value after 25 tabu iterations: 0.533333 
Done optimise; elapsed =   0.02 
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> R4C5.lay <- R4C5.od$design 
> #'### Independently calculate the A-measure 
> (designAmeasures(mat.Vpredicts(target = ~ Lines -1,  
+                                fixed  = ~ Rows + Columns,  
+                                design = R4C5.lay))) 
          all 
all 0.5333333 

 The AVPD for the row-column design (0.53) 
is almost half that for the RCBD (0.95). 



The od design 
> #'### Randomize design according to the plots structure 
> R4C5.lay <- designRandomize(allocated  = R4C5.lay["Lines"],  
+                             recipient  = R4C5.lay[c("Rows", "Columns")],  
+                             seed       = 65460) 
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 This randomization ensures a valid randomization. 
o That is, a randomization that is randomly selected from all possible randomizations. 

> #'### Calculate the A-measure of the randomized design 
> (designAmeasures(mat.Vpredicts(target = ~ Lines -1,  
+                                fixed  = ~ Rows + Columns,  
+                                design = R4C5.lay))) 
          all 
all 0.5333333 

 No change in the AVPD. 



The anatomy of the od design 
> #'### Check properties of the od layout 
> R4C5.canon <- designAnatomy(formulae = list(plots = ~ Rows*Columns, 
+                                             lines = ~ Lines), 
+                             data     = R4C5.lay) 
> summary(R4C5.canon) 
 
Summary table of the decomposition for plots & lines (based on adjusted quantities) 
 
 Source.plots df1 Source.lines df2 aefficiency eefficiency order 
 Rows           3                                                
 Columns        4 Lines          4      0.0625      0.0625     1 
 Rows#Columns  12 Lines          4      0.9375      0.9375     1 
                  Residual       8                               
 
The design is not orthogonal 
 

 Same as the Youden square anatomy. 

18 
Each treatment occurs in 4 out of 5 
columns and so the design is a YSD. 



> #'## Try a starting design in which row-column randomization is used on a systematic design 
> R4C5.ini <- designRandomize(allocated  = data.frame(Lines =  
+                                                       factor(rep(1:t, times = b),  
+                                                              labels = LETTERS[1:t])),  
+                             recipient = list(Rows=b, Columns=t),  
+                             seed      = 95332)  
 
 
 
 
 
> #'### Get the od design 
> R4C5.od <- od(fixed   = ~ Rows + Columns + Lines, 
+               permute = ~ Lines,  
+               search  = "tabu", maxit = 25, 
+               data    = R4C5.ini)  
Done set up; elapsed =   0.00 
Error in od(fixed = ~Rows + Columns + Lines,  
permute = ~Lines, search = "tabu",  :  
  Disconnected design of order 4 

  

Can choose the wrong starting design 
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 At least some DF for the fixed permute term 
are confounded with other fixed terms: 
 All DF Lines with Columns here; 

 Solution: 
 Choose a connected design (full Lines df at 

least partially confounded with Rows#Columns. 
 Or, use a mixed model (not here). 



Optimal systematic design in, optimal systematic 
design out 
YSD.sys <- cbind(fac.gen(list(Rows=b, Columns=t)), 
                 Lines = factor(designLatinSqrSys(t)[1:(b*t)], labels = LETTERS[1:t])) 
R4C5.sys.od <- od(fixed   = ~ Rows + Columns + Lines, 
                  permute = ~ Lines,  
                  search  = "tabu", maxit = 25, 
                  data    = YSD.sys) 
plotR4C5(R4C5.sys.od$design) 
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Take home message:  
od produces an optimal design, 
not a randomized design. 



Some points to remember in using od 
 The treatment terms cannot be confounded with fixed unit terms: 

 e.g. Lines confounded with Columns. 
 od does not necessarily produce a properly randomized design: 

 That is, one randomly selected from all possible randomizations; 
 Supply a systematic optimal design: od will return it unmodified; 
 Can use designRandomize after od when independent errors are assumed; 

otherwise before od. 

 The computed A-value (AVPD) can be checked, or the value under 
an alternative model calculated, with 
designAmeasures(mat.Vpredicts(…)). 
 mat.Vpredicts calculates the predictions variance matrix and 
designAmeasures calculates the AVPD from the matrix. 

 Some designs are optimal under both fixed and random units terms: 
 orthogonal, balanced (incomplete-) block, (most generalized) Youden square 

and the lattice square designs are A-optimal under fixed and mixed models. 21 



3.  Using the concepts for unbalanced designs 
3(a) A partially balanced incomplete-block design (PBIBD) from 

C&C (p.379) 
 This design is suitable for a situation in which: 

 the number of treatments is 6,  
 each treatment is to be replicated 4 times,  
  the anticipated model is Treatments | Blocks + Blocks:Units, and 
 the number of units per block restricted to 4. 
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6 treatments 

6 Treatments 6 Blocks 
4 Units in B 

24 units 

 

Blocks 
Units I II III IV V VI 

1 1 2 3 4 5 6 
2 4 5 6 1 2 3 
3 2 3 1 5 6 4 
4 5 6 4 2 3 1 



PBIBD randomized layout 
> #'## Input the systematic design 
> b <- 6 
> k <- 4 
> t <- 6 
> PBIBD2.sys <- cbind(fac.gen(list(Blocks = b, Units = k)), 
+                     Treatments = factor(c(1,4,2,5,  
+                                           2,5,3,6,  
+                                           3,6,1,4,  
+                                           4,1,5,2,  
+                                           5,2,6,3,  
+                                           6,3,4,1))) 
> #'## Randomize the systematic design 
> PBIBD2.lay <- designRandomize(allocated         = PBIBD2.sys["Treatments"], 
+                               recipient         = PBIBD2.sys[c("Blocks", "Units")], 
+                               nested.recipients = list(Units = "Blocks"), 
+                               seed               = 98177) 
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PBIBD properties 
>#'## Compute the anatomy 
> PBIBD2.canon <- designAnatomy(formulae = list(unit = ~ Blocks/Units, 
+                                               trt  = ~ Treatments), 
+                               data     = PBIBD2.lay) 
> summary(PBIBD2.canon, which.criteria = c('aeff', 'xeff', 'eeff','order', 'dforth')) 
 
Summary table of the decomposition for unit & trt (based on adjusted quantities) 
 
 Source.unit   df1 Source.trt df2 aefficiency xefficiency eefficiency order dforthog 
 Blocks          5 Treatments   2      0.2500      0.2500      0.2500     1        0 
                   Residual     3                                                    
 Units[Blocks]  18 Treatments   5      0.8824      1.0000      0.7500     2        3 
                   Residual    13                                                    
 
The design is not orthogonal 
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 What are the eigenvalues for PBUQLPBU? 
 Three are one and two are 0.75 for a harmonic mean of 0.8824. 

 That 88% of Lines information confounded with Units[Blocks] is good. 



PBIBD with unique Units levels 
> PBIBD2.lay$AUnits <- with(PBIBD2.lay, fac.combine(list(Blocks,Units))) 
> levels(PBIBD2.lay$AUnits) 
 [1] "1"  "2"  "3"  "4"  "5"  "6"  "7"  "8"  "9"  "10" "11" "12" "13" "14" "15" "16" "17" "18" 
[19] "19" "20" "21" "22" "23" "24" 
> #'### Blocks + AUnits 
> PBIBD2U.canon <- designAnatomy(formulae = list(unit = ~ Blocks + AUnits, 
+                                                trt  = ~ Treatments), 
+                                data     = PBIBD2.lay) 
> summary(PBIBD2U.canon, which.criteria = c('aeff', 'xeff', 'eeff','order', 'dforth')) 
 
Summary table of the decomposition for unit & trt (based on adjusted quantities) 
 
 Source.unit    df1 Source.trt df2 aefficiency xefficiency eefficiency order dforthog 
 Blocks           5 Treatments   2      0.2500      0.2500      0.2500     1        0 
                    Residual     3                                                    
 AUnits[Blocks]  18 Treatments   5      0.8824      1.0000      0.7500     2        3 
                    Residual    13                                                    
The design is not orthogonal 
> #'### Blocks/AUnits 
> PBIBD2U.canon <- designAnatomy(formulae = list(unit = ~ Blocks/AUnits, 
+                                                trt  = ~ Treatments), 
+                                data     = PBIBD2.lay) 25 

Produces exactly the 
same anatomy. 

AUnits = All Units 



Using od to get an A-optimal design 
> #'### Initialize with a randomized layout 
> PBIBD.ini <- cbind(fac.gen(list(Blocks=b, Units=k)), 
+                    Treatments = factor(rep(1:t, times = b*k/t), labels = LETTERS[1:t])) 
> PBIBD.ini <- designRandomize(allocated         = PBIBD.ini["Treatments"],  
+                              recipient         = PBIBD.ini[c("Blocks", "Units")],  
+                              nested.recipients = list(Units = "Blocks"), 
+                              seed              = 4794) 
> #'### Get the od design 
> PBIBD.od <- od(fixed   = ~ Blocks + Treatments, 
+                permute = ~ Treatments,  
+                search  = "tabu", maxit = 25, 
+                data    = PBIBD.ini) 
Done set up; elapsed =   0.00 
Initial A-value = 0.566667 (6 A-equations; rank C 5) 
A-value after tabu loop 1 is 0.559487 
A-value after tabu loop 2 is 0.559487 
A-value after tabu loop 3 is 0.559487 
… 
Final A-value after 25 tabu iterations: 0.559487 
Done optimise; elapsed =   0.02 26 

> (designAmeasures( 
+   mat.Vpredicts(target = ~ Treatments -1,  
+                 fixed  = ~ Blocks,  
+                 design = PBIBD2.lay))) 
          all 
all 0.5666667 

AVPD for C&C design. 



PBIBD od randomization 
> PBIBD.lay <- PBIBD.od$design 
> #'## Randomize the od design 
> PBIBD.lay <- designRandomize(allocated         = PBIBD.lay["Treatments"], 
+                              recipient         = PBIBD.lay[c("Blocks", "Units")], 
+                              nested.recipients = list(Units = "Blocks"), 
+                              seed              = 13332) 
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PBIBD od design properties 
> #'### Check properties of the od layout 
> PBIBD.canon <- designAnatomy(formulae = list(plots = ~ Blocks/Units, 
+                                              trts  = ~ Treatments), 
+                              data     = PBIBD.lay) 
> summary(PBIBD.canon, which.criteria = c('aeff', 'xeff', 'eeff','order', 'dforth')) 
 
Summary table of the decomposition for plots & trts (based on adjusted quantities) 
 
 Source.plots  df1 Source.trts df2 aefficiency xefficiency eefficiency order dforthog 
 Blocks          5 Treatments    4      0.0937      0.1875      0.0625     2        0 
                   Residual      1                                                    
 Units[Blocks]  18 Treatments    5      0.8937      1.0000      0.8125     3        1 
                   Residual     13                                                    
 
The design is not orthogonal 
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 The od design is (nearer) A-optimal, with  
 a higher A-efficiency than the PBIBD2 (0.8937 versus 0.8824), 
 three rather than two different efficiency factors, 
 the range of the efficiency value is less  

(min of 0.75 versus 0.8125). 

This shows that, in contrast to a 
BIBD, a PBIBD of order 2 is not 
necessarily A-optimal. 
Which one to use? 
 The PBIBD2 will have only 2 

SEM values and so 3 SEDs. 
 The od design would have 6 

SEDs, but they would cover a 
narrower range. 

More than A-value to consider. 



3(b) A wheat experiment (Gilmour et al., 1995) 
 Investigates 25 varieties of wheat. 
 A balanced lattice square on a 10 ´ 15 grid from C&C. 
 Six reps, each 5 rows ´ 5 columns 
 It is an example in the asreml manual, 

and the asremlPlus manual and  
the Wheat vignette:  
vignette(package = 'asremlPlus'). 

 Factor-allocation diagram 

29 Sr = SuperRows, Sc = SuperColumns 

25 Varieties 

25 varieties 

2 SuperRows 
3 SuperColumns 
5 Rows in Sr, Sc 
5 Columns in Sr, Sc 

150 plots 

 

How is this design to be randomized? 



The wheat experiment — models 

 Initial allocation model: 
 Varieties | SRows + SColumns + SRows:SColumns +  

                      SRows:SColumns:Rows + SRows:SColumns:Columns +   
                      SRows:SColumns:Rows:Columns. 

 
 The balanced lattice square is A-optimal for this model. 
 No term for differences between whole rows and whole columns, because 

not randomized by them. 
o If had, then structure (SRows/Rows) * (SColumns/Columns), not (SRows*SColumns) / (Rows*Columns). 30 

 Allocated Þ fixed; 
Recipient Þ random. 

 Take all combinations of the 
factors within a panel, subject to 
the restriction that a nested factor 
cannot occur without its nesting 
factor. 

allocated recipient 

A randomization model 

An identity (or residual) term  
– it uniquely indexes the units. 

25 Varieties 

25 varieties 

2 SuperRows 
3 SuperColumns 
5 Rows in Sr, Sc 
5 Columns in Sr, Sc 

150 plots 

 



The wheat experiment – models (revised) 

 Initial allocation model: 
 Varieties | SRows*SColumns + SRows:SColumns:Rows + SRows:SColumns:Columns 

+ SRows:SColumns:Rows:Columns. 
 Homogeneous allocation model: 

 Might make SRows*SColumns fixed. 
 Prior allocation model: 

 Varieties | SRows*SColumns + SRows:SColumns:Rows + 
SRows:SColumns:Columns + units + ar1(SRows:Rows):ar1(SColumns:Columns). 

 The prior allocation model is not a randomization model, but a randomization-
based model. 31 

allocated recipient 

nugget variance 

25 Varieties 

25 varieties 

2 SuperRows 
3 SuperColumns 
5 Rows in Sr, Sc 
5 Columns in Sr, Sc 

150 plots 

 

spatial residual 
correlation 



> Wheat.canon <- designAnatomy(formulae = list(units = ~ (SRows:SColumns)/(Rows*Columns),  
+                                              trt   = ~ Variety), 
+                              data     = Wheat.dat)  
> summary(Wheat.canon, which.criteria = c("aeff", "order"))  
Summary table of the decomposition for units & trt (based on adjusted quantities)  
 Source.units                 df1 Source.trt df2 aefficiency order 
 SRows:SColumns                 5                                  
 Rows[SRows:SColumns]          24 Variety     24      0.1667     1 
 Columns[SRows:SColumns]       24 Variety     24      0.1667     1 
 Rows#Columns[SRows:SColumns]  96 Variety     24      0.6667     1 
                                  Residual    72  
The design is not orthogonal 
> Wheat.RC.canon <- designAnatomy(formulae = list(units = ~ ARows*AColumns,  
+                                                 trt    = ~ Variety),  
+                                 data     = Wheat.dat)  
> summary(Wheat.RC.canon)  
Summary table of the decomposition for units & trt (based on adjusted quantities) 
Source.units   df1 Source.trt df2 aefficiency eefficiency order 
 ARows            9 Variety      8      0.1667      0.1667     1 
                    Residual     1                               
 AColumns        14 Variety     12      0.1667      0.1667     1 
                    Residual     2                               
 ARows#AColumns 126 Variety     24      0.8452      0.6732    18 
                    Residual   102   

     

The wheat experiment - properties 

However, Gilmour et al. 
(1995) and Butler et al. 
(2018) have ignored 
SRows:SColumns (Reps).  
What happens? 
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Not randomization-based:  
 Pushes down the 53 DF of  the  

first 3 sources from the lattice: 
o into all units sources;  
o some in ARow#ACol Residual. 

 More Variety information 
confounded with Row#Col, but ... 

Based on initial or homogeneous 
allocation model, with 
SRows*SColumns combined. 

ARow = SRows:Rows; (A = All) 
AColumn = SColumns:Columns. 



A-optimality of the design 
 The resolved design has the advantage that SRows*Scolumns (Replicate) 

differences do not contribute to the variability of the Varieties. 
 It is the A-optimal resolved design. 

 It is not the A-optimal row-column design, i.e. under the model: 
 ARows + AColumns + Varieties | Rows:Columns. 

 Nor is it A-optimal for the prior allocation model with : 
 Varieties | SRows*SColumns + SRows:SColumns:Rows + SRows:SColumns:Columns + units 

+ ar1(SRows:Rows):ar1(SColumns:Columns). 
 For these alternative models, use od to search for (near) A-optimal designs. 
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3(c)  A Plant Accelerator 
(PA) design 

 Split-unit design from od. 
 75 lines assigned to  

main units (2 carts) using  
a blocked, row-column  
design: 
 6 blocks of 4 Lanes; 
 21 NAM lines (blue) on  

4 main units each; 
 52 NAM lines (grey) on  

3 main units each; 
 Scout & Gladius (green)  

on 12 main units each. 
 2 Conditions randomized  

to pairs of carts (not shown). 34 



The anticipated model 

 Zones + Lines + Conditions +  
Lines:Conditions |  
MainPositions +  
Zones:MainPositions +  
Zones:MainPositions:Rows +  
Zones:MainPositions:Rows:Carts. 
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Zones-MainPositions cell 

 Zones are the blocks of 4 Lanes; 
 MainPositions are the columns of 

pairs of carts; 
 Rows are the 4 lanes within a Zone; 
 Zones:MainPositions:Rows are the 

main units. 
 Carts are the pairs of Carts within a 

Zones:MainPositions:Rows 
combination; they are the sub-units. 



Check properties of the PA design 
> PA.canon <- designAnatomy(formulae = list(carts = ~ (Zones*MainPositions)/Rows/Carts, 
+                                           trts = ~ Lines * Conditions), 
+                           data = PA.lay) 
> summary(PA.canon, which=c("aeff", "eeff", "order", "dfor")) 
 
Summary table of the decomposition for carts & trts (based on adjusted quantities) 
 
 Source.carts                    df1 Source.trts      df2 aefficiency eefficiency order dforthog 
 Zones                             5 Lines              5      0.1497      0.1254     5        0 
 MainPositions                    10 Lines             10      0.2101      0.1724    10        0 
 Zones#MainPositions              50 Lines             50      0.1209      0.0193    50        0 
 Rows[Zones:MainPositions]       198 Lines             74      0.6764      0.2746    66        9 
                                     Residual         124  
 Carts[Zones:MainPositions:Rows] 264 Conditions         1      1.0000      1.0000     1        1 
                                     Lines#Conditions  74      1.0000      1.0000     1       74 
                                     Residual         189                                        
The design is not orthogonal 
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 The information about Lines confounded with Rows[Zones:MainPositions] is low. 
o However, all 74 df for Lines confounded with it and so Lines is connected. 

 It is anticipated that the differences between MainPositions can be described in terms of a 
linear trend across MainPositions and that Zones:MainPositions can be ignored. 
o Could optimize for linear trend by replacing MainPositions with a centred numeric covariate, say xMainPosn. 
o This tends to push extra replicates to the first and last MainPositions, which is not optimal for curved trends. 
o So optimize for factor MainPositions and check properties for numeric covariate xMainPosn. 



Linear trend across MainPositions 
> PA.xMainPosn.canon <- designAnatomy(list(cart=~ Zones/MainUnits/Carts,  
+                                          treat=~ xMainPosn + Lines * Conditions), 
+                                     data = PA.lay) 
> summary(PA.xMainPosn.canon, which=c("aeff", "eeff", "order", "dfor")) 
 
Summary table of the decomposition for cart & treat (based on adjusted quantities) 
 
 Source.cart            df1 Source.treat     df2 aefficiency eefficiency order dforthog 
 Zones                    5 Lines              5      0.1500      0.1255     5        0 
 Mainunits[Zones]       258 xMainPosn          1      1.0000      1.0000     1        1 
                            Lines             74      0.9879      0.8217     6       69 
                            Residual         183                                        
 Carts[Zones:Mainunits] 264 Conditions         1      1.0000      1.0000     1        1 
                            Lines#Conditions  74      1.0000      1.0000     1       74 
                            Residual         189                                        
 
Table of (partial) aliasing between sources derived from the same formula 
 
 Source           df  Alias     In    aefficiency eefficiency order dforthog 
 Lines             74 xMainPosn treat      0.9960      0.7687     2       73 
 Lines#Conditions 149 xMainPosn treat      0.9980      0.7687     2      148 
 
The design is not orthogonal 
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More importantly the majority of the rest of the information about Lines, 
is available from Rows[Zones:MainPositions] (main units); 
(at least 82%; on average 98.8%). 

Clearly, Lines is not 
orthogonal to a linear trend 
in xMainPosn. The 
aliasing is moderate (23% 
of one Lines df is lost). 

Replace 11 MainPositions 
with 44 MainUnits and 
include a covariate. 



Using od to get a design  
— initial main-unit design 
 Aim to balance between 6 Zones the numbers of  

 RILs (1:21) replicated 4 times (blue),  
 Parents (74:75) replicated 12 times (green), 
 RILs (22:73) replicated 3 times (grey).  

> b <- 6 
> r <- 4 
> c <- 11 
> maxit <-25 
> search <- "tabu“ 
> main.sys <- cbind(fac.gen(list(Zones = b, Rows = r, MainPositions = c)), 
+                   Lines = factor(c(1:14, 74:75, 74:75, 22:47,        #Z1 
+                                    15:21, 1:7, 74:75, 74:75, 48:73,  #Z2 
+                                    8:21, 74:75, 74:75, 22:47,        #Z3 
+                                    1:14, 74:75, 74:75, 48:73,        #Z4 
+                                    15:21, 1:7, 74:75, 74:75, 22:47,  #Z5 
+                                    8:21, 74:75, 74:75, 48:73)))      #Z6 
> #'### Randomize systematic design 
> main.sys <- designRandomize(allocated = main.sys["Lines"], 
+                             recipient = main.sys[c("Zones", "Rows", "MainPositions")],  
+                             nested.recipients = list(Rows = c("Zones", "MainPositions")), 
+                             seed = 71598) 
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Zones-MainPositions cell 

The balancing is not 
essential, but an attempt 
to ensure that a balanced 
design is considered. 



Recall the anticipated  
model 

 Zones + Lines + Conditions +  
Lines:Conditions |  
MainPositions + Zones:MainPositions +  
Zones:MainPositions:Rows +  
Zones:MainPositions:Rows:Carts. 

 Several random terms. 
 By default od assumes that the variance  

component for Zones:MainPositions:Rows:Carts is one and the rest are 0.1 times it. 
o That is, other than the residual, the components are small. 
o Suppose this is OK, except that MainPositions is likely to be 0.5. 
o Zones fixed is equivalent to assuming that the variance component is infinite. 

39 

Zones-
MainPositions cell 



Using od to set variance parameters for the main-
unit design 
> #'### Set variance parameters 
> main.ini <- od(fixed = ~ Zones + Lines, 
+                random = ~ MainPositions + Zones:(Rows + MainPositions), 
+                permute = ~ Lines, 
+                start.values = TRUE,  
+                data = main.sys) 
> vp.table <- main.ini$vparameters.table 
> vp.table$Value[1] <- 0.5 
> (vp.table) 
            Component Value 
1       MainPositions   0.5 
2          Zones:Rows   0.1 
3 Zones:MainPositions   0.1 
4             units!R   1.0 
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With this argument, returns an object 
that includes a variance parameter table. 

MainPositions will be set 
to 0.5, as desired. 



Using od to get a near-A-optimal main-unit design 
> #'### Optimize 
> main.od <- od(fixed = ~ Zones + Lines, 
+               random = ~ MainPositions + Zones:(Rows + MainPositions), 
+               permute = ~ Lines, 
+               maxit = maxit, search = search,  
+               G.param = vp.table, 
+               data = main.sys) 
Done set up; elapsed =   0.00 
Initial A-value = 1.035331 (75 A-equations; rank C 74) 
A-value after tabu loop 1 is 0.707094 
A-value after tabu loop 2 is 0.706797 
A-value after tabu loop 3 is 0.706732 
... 
A-value after tabu loop 25 is 0.706413 
Hash table size 678 
Final A-value after 25 tabu iterations: 0.706413 
Done optimise; elapsed =   4.65 
> main.lay <- main.od$design 
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Need to supply the variance parameter 
table to the G.param argument. 



How does the mixed-model design compare with a 
fixed-model design for the mixed model?  
> main.fix.od <- od(fixed = ~ Zones*MainPositions + Zones:Rows + Lines, 
+                   permute = ~ Lines, 
+                   maxit = maxit, search = search,  
+                   data = main.sys) 
Done set up; elapsed =   0.00 
Initial A-value = 1.664428 (75 A-equations; rank C 73) 
A-value after tabu loop 1 is 0.929683 
… 
A-value after tabu loop 25 is 0.912422 
Hash table size 555 
Final A-value after 25 tabu iterations: 0.912422 
Done optimise; elapsed =   4.62 
> #'### Calculate A-measure under mixed model  
> main.fix.lay <- main.fix.od$design 
> designAmeasures(mat.Vpredicts(target = ~ Lines - 1, 
+                               fixed = ~ Zones -1, 
+                               random = ~ MainPositions + Zones:(Rows + MainPositions) - 1, 
+                               G = as.list(vp.table$Value[-4]), 
+                               design = main.fix.lay)) 
          all 
all 0.7455769 
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This compares with 0.706043, and is 1.06 times the mixed-model design. 
The sed would only be slightly inflated (3%). 



Expand the main-unit design to a split-unit design 
> #'### Expand main-unit design to add Carts with Conditions 
> PA.sys <- cbind(fac.gen(list(Zones = b, Rows = r, MainPositions = c, Carts = 2)), 
+                 data.frame(Lines      = factor(rep(main.lay$Lines, each=2), levels=1:75), 
+                            Conditions = factor(rep(1:2, times=264),  
+                                                    labels = c('0 NaCl','100 NaCl')))) 
> #'### Randomize the whole design 
> PA.lay <- designRandomize(allocated = PA.sys[c("Lines", "Conditions")],  
+                           recipient = PA.sys[c("Zones", "Rows", "MainPositions",  
+                                                    "Carts")],  
+                           nested.recipients = list(Rows = c("Zones", "MainPositions"), 
+                                                    Carts = c("Zones", "Rows",  
+                                                              "MainPositions")),  
+                           seed = 51412) 
> PA.lay <- cbind(fac.gen(list(Lanes = nlanes, Positions = posns)), 
+                 PA.lay) 
> #'### Add factors and variates 
> PA.lay <- within(PA.lay,  
+                 {   
+                   xMainPosn <- as.numfac(MainPositions) 
+                   xMainPosn <- -(xMainPosn - mean(xMainPosn)) 
+                   MainUnits <- fac.combine(list(Rows, MainPositions)) 
+                 }) 43 

Permute Carts within  
Zones-Rows-MainPositions cell 

Repermute 
Rows  



4.  Summary of constructing nonorthogonal designs 

 More difficult to identify the systematic design for a nonorthogonal 
design.  
 Not just a matter of using a standard, well-known design. 

 Still use designRandomize to ensure a valid randomization and 
designAnatomy to check the properties of any design. 

 For this, it remains necessary to: 
 Divide factors based on allocation of factors (as well as fixed/random). 
 Identify the crossing and nesting, which depends not only on the innate 

relationships, but also the model employed to account for anticipated variation. 
 Numeric covariates introduce partial aliasing (nonorthogonality 

between allocated terms). 
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Degrees of balance 
 Three degrees of balance have been encountered in the designs presented: 

1. Orthogonal, and so balanced: all canonical efficiency factors (nonzero eigenvalues) are 
one; 

2. Balanced, but nonorthogonal: some canonical efficiency factors are not one, however, 
they take just one value for (i) any recipient source or (ii) any allocated source when 
confounded with a particular recipient source. 

3. Unbalanced and so must be nonorthogonal: the canonical efficiency factors for at least 
one source of type (i) or (ii) above take more than one value.  

 As we go down this list: 
 the degree of balance decreases and the complexity of the analysis increases; 

 One of the great advantages of balanced designs is that all the standard errors of 
estimates of contrasts for a source of type (ii) will be equal. 
 All contrasts are treated equally. 
 Easier to present the results. 
 However, not always achievable. 
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Identifying an optimal design 

 Several methods available for selecting an optimal design: 
 Deploy a standard design, like a randomized complete-block or split-unit 

design, known to be optimal 
 – designRandomize can be used to obtain layouts for these. 

 Manually constructing a design, including the use of design keys for factorial 
experiments (Patterson & Bailey, 1978), given enough knowledge of 
combinatorics. 

 Consult a catalogue of designs (e.g. Cochran and Cox, 1957; Hinkelmann & 
Kempthorne, 2005; agricolae , de Mendiburu, 2019). 

 Computer generation of designs: 
o CycDesigN, od, SAS, JMP. 
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5. What happens when there is missing data? 

 Suppose the 18th plot in the YSD is lost. 
 How does this affect the design’s properties? 
 
 
> #'## Set up a layout with a single missing value 
> YSD.miss1.lay <- YSD.lay 
> YSD.miss1.lay$Lines[18] <- NA 
> #'## Get the anatomy of the layout 
> YSD.miss1.canon <- designAnatomy(formulae = list(plots = ~ Rows*Columns,  
+                                                  lines = ~ Lines), 
+                                  data = na.omit(YSD.miss1.lay)) 
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Need an NA for the plot, but cannot 
have an NA for designAnatomy. 



The anatomy for a missing value 
> summary(YSD.miss1.canon, which.criteria = c("aeff", "xeff", "eeff", "order")) 
Summary table of the decomposition for plots & lines (based on adjusted quantities) 
 
 Source.plots df1 Source.lines df2 aefficiency xefficiency eefficiency order 
 Rows           3 Lines          1      0.0500      0.0500      0.0500     1 
                  Residual       2                                           
 Columns        4 Lines          4      0.0444      0.1968      0.0189     3 
 Rows#Columns  11 Lines          4      0.8948      0.9663      0.7681     3 
                  Residual       7                                           
 
Table of (partial) aliasing between sources derived from the same formula 
 Source  df Alias In    aefficiency xefficiency eefficiency order 
 Columns 4  Rows  plots      0.9870      1.0000      0.9500     2 
 
The design is not orthogonal 
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Columns is not orthogonal to Rows;  
it is partially aliased with Rows;  
Columns is orthogonalized to Rows, 
losing 1.3% in the process. 



The anatomy for a missing value 
> summary(YSD.miss1.canon, which.criteria = c("aeff", "xeff", "eeff", "order")) 
Summary table of the decomposition for plots & lines (based on adjusted quantities) 
 
 Source.plots df1 Source.lines df2 aefficiency xefficiency eefficiency order 
 Rows           3 Lines          1      0.0500      0.0500      0.0500     1 
                  Residual       2                                           
 Columns        4 Lines          4      0.0444      0.1968      0.0189     3 
 Rows#Columns  11 Lines          4      0.8948      0.9663      0.7681     3 
                  Residual       7                                           
The design is not orthogonal 
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Lines confounding is no 
longer balanced. 

Nor is it orthogonal to Rows. 

Less Lines information confounded with 
Rows#Columns (cf 0.9375 for the YSD). 



Confounding versus aliasing 
Summary table of the decomposition for plots & lines (based on adjusted quantities) 
 Source.plots df1 Source.lines df2 aefficiency xefficiency eefficiency order 
 Rows           3 Lines          1      0.0500      0.0500      0.0500     1 
                  Residual       2                                           
 Columns        4 Lines          4      0.0444      0.1968      0.0189     3 
 Rows#Columns  11 Lines          4      0.8948      0.9663      0.7681     3 
                  Residual       7                                           
 
Table of (partial) aliasing between sources derived from the same formula 
 Source  df Alias In    aefficiency xefficiency eefficiency order 
 Columns 4  Rows  plots      0.9870      1.0000      0.9500     2 
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 Aliasing refers to nonorthogonality between sources in the same tier (panel): 
 i.e. both allocated or both recipient sources; e.g. Rows and Columns. 

 Confounding refers to nonorthogonality between sources from different tiers 
(panels): 
 i.e. an allocated and a recipient source; e.g. Lines and Rows. 

20 plots 

4 Rows 
5 Columns 

5 lines 

5 Lines  



Confounding versus aliasing 
 Confounding and aliasing are about the relationships between sources. 
 An allocated (recipient) source can be aliased or partially aliased with another 

allocated (recipient) source. 
 An aliased source is one that when the term for it is fitted, there is no information about its 

source available. 
 A partially aliased source only loses some of its information to sources for previously fitted 

terms, e.g. Columns is partially aliased with Rows.  
 Aliasing is to be avoided if possible, although sometimes it is purposefully employed (e.g. alias 

potentially small three-factor treatment interactions with treatment main effects in fractional 
factorial experiments). 

 An allocated source can be confounded or partially confounded with a recipient 
source. 
 It is confounded with a recipient source when all information about it is associated with that 

recipient source. 
 If only part of the information is associated with the recipient source, then it is partially 

confounded with the recipient source. 
 Confounding or partial confounding is unavoidable in experiments. 
 Confounding is preferred to partial confounding, if it is achievable (and provided there is a 

Residual for the recipient source). 51 



Confounding examples 

 Confounding 
> summary(RCBD.canon)  
 Source.plots df1 Source.lines df2 aefficiency eefficiency order  
 Rows           3  
 Columns[Rows] 20 Lines          4      1.0000      1.0000     1 
                  Residual      16  

 Partial Confounding 
 Source.plots df1 Source.lines df2 aefficiency xefficiency eefficiency order 
 Rows           3 Lines          1      0.0500      0.0500      0.0500     1 
                  Residual       2                                           
 Columns        4 Lines          4      0.0444      0.1968      0.0189     3 
 Rows#Columns  11 Lines          4      0.8948      0.9663      0.7681     3 
                  Residual       7  
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In an RCBD, Lines is confounded with 
Columns[Rows], i.e. all information about Lines is 
associated with the recipient source  Columns[Rows]. 

In a YSD with a missing value, Lines is partially confounded 
with Rows, Columns and Columns[Rows], i.e. some information 
about Lines is associated with all recipient sources. 



A missing treatment 

 How does a missing treatment affect the properties of the design? 
> #'## Set up a layout with a missing Line 
> YSD.missA.lay <- YSD.lay 
> YSD.missA.lay$Lines[YSD.missA.lay$Lines == "A"] <- NA 
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The anatomy for a missing treatment 
> #'## Get the anatomy of the layout 
> YSD.missA.canon <- designAnatomy(formulae = list(plots = ~ Rows*Columns,  
+                                                  lines = ~ Lines), 
+                                  data = na.omit(YSD.missA.lay)) 
> summary(YSD.missA.canon, which.criteria = c("aeff", "xeff", "eeff", "order")) 
 
Summary table of the decomposition for plots & lines (based on adjusted quantities) 
 Source.plots df1 Source.lines df2 aefficiency xefficiency eefficiency order 
 Rows           3                                                            
 Columns        4 Lines          3      0.0909      0.0909      0.0909     1 
                  Residual       1                                           
 Rows#Columns   8 Lines          3      0.9091      0.9091      0.9091     1 
                  Residual       5                                           
 
Table of (partial) aliasing between sources derived from the same formula 
 Source  df Alias In    aefficiency xefficiency eefficiency order 
 Columns 4  Rows  plots      0.9362      1.0000      0.9167     2 
 
The design is not orthogonal 54 

What has been the 
effect of the 
missing treatment? 



6. Systematic allocation and pseudoreplication 

 It happens that randomization is not always desirable or possible. 
 A grapevine experiment is to be run in two greenhouses:  

 One greenhouse is to be kept at ambient temperature and the other is to be 
cooled; 

 Of the two greenhouses, one is naturally warmer than the other and so needs 
to be the warm greenhouse. 

 So randomization is not desirable. 
 Within each greenhouse, two salinity treatments (control and saline) 

are to be applied to 12 varieties. 
 The combinations of Heat, Salinity and Varieties are to be replicated 

6 times. 
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Grapevine design 
 Within each greenhouse: 

 There are 2 Sides (blue 
rectangles), with 6 main units 
per Side (pink and yellow lines  
separates main units). 

 A split-unit design is to be  
used to assign  
o Salinities to main units; 
o Varieties to 12 pots (subunits)  

in each main unit. 
 Split-unit design because: 

o Large differences between 
Salinities; 

o Variety differences are the most 
important. 56 

(Numbers are pots.) 



Grapevine design 
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2 Heats 
 
 
2 Salinities 
 
12 Varieties 

48 treatments 

2 Greenhouses 
2 Sides in G 
3 BRows in G, S 
2 BCols in G, S 
 
12 Pots in G, S, Br, Bc 

288 pots 

 

 Anticipated model: 
 Heat * Salinity * Varieties |  

Ghouses + Ghouses:Sides + 
Ghouses:Sides:BRows + 
Ghouses:Sides:BCols + 
Ghouses:Sides:Brows:BCols + 
Ghouses:Sides:Brows:Bcols:Pots. 

Main units 
Subunits 

To balance Salinity, a 3 ´ 2 extended Latin 
square design, based on 2 ´ 2 Latin 
squares is to be used in each Side. 



Generating the 
systematic design 
in R 
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> split.sys <- cbind(fac.gen(list(GHouse = 2, Sides = c("N", "S"),  
+                                 BRows = 3, BCols = 2, Pots = 12)), 
+                    fac.gen(list(Heat = c("Warm", "Cool"), 12, Varieties = 12)), 
+                    Salinity = factor(rep(c(designLatinSqrSys(2),1,2,  
+                                            designLatinSqrSys(2, start = c(2,1)),2,1),  
+                                          each = 12, times = 2),  
+                                      labels = c("Control", "Na"))) 

Generate the recipient 
factors indexing the pots. 

Two Latin squares with 
different starting rows. 

Extra rows. 

2 Heats 
 
 
2 Salinities 
 
12 Varieties 

48 treatments 

2 Greenhouses 
2 Sides in G 
3 BRows in G, S 
2 BCols in G, S 
 
12 Pots in G, S, BR, BC 

288 pots 

 

Generate Heat and 
Varieties in standard 
order; the 12 works 
as if a factor with 12 
levels occurs in this 
position. 

Salinity has to be 
assigned using Extended 
Latin Squares (ELS). 

Pair of ELS designs 
repeated twice, one for 
each GHouse. 



Systematic 
grapevine design 
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 Numbers are 
Varieties. 



The except option allows the generation of a design, 
in which Heat is systematically allocated, while Salinity 
and Lines are randomized. 

Randomizing the 
grapevine design 

> split.lay <- designRandomize(allocated = split.sys[c("Heat", "Salinity", "Varieties")], 
+                              recipient = split.sys[c("GHouse", "Sides",  
+                                                      "BRows", "BCols", "Pots")],  
+                              nested.recipients = list(Sides = "GHouse", 
+                                                       BRows = c("Sides", "GHouse"), 
+                                                       BCols = c("Sides", "GHouse"), 
+                                                       Pots = c("Sides", "GHouse", 
+                                                                 "BRows", "BCols")), 
+                              except = "GHouse",  
+                              seed = 64131) 
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 Use designRandomize from dae 
to randomize the systematic layout. 
 The randomization is determined by 

the nesting relationships between the 
recipient factors. 

2 Heats 
 
 
2 Salinities 
 
12 Varieties 

48 treatments 

2 Greenhouses 
2 Sides in G 
3 BRows in G, S 
2 BCols in G, S 
 
12 Pots in G, S, BR, BC 

288 pots 

 

The nested.recipients specifies the 
nesting shown in the pots panel; factors 
not nested are assumed to be crossed. 



Grapevine design 

 Warm has been 
systematically assigned to 
the first Greenhouse. 

 Within a Side there are 2 
columns (BCols) of main 
units: 
 One has 2  main units with 

Control and the other 2 with 
Na. 

 A complete set of the 12 
Varieties is randomized 
within each main unit. 
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Properties of the grapevine design 
> split.canon <- designAnatomy(formulae = list(tests = ~ GHouse/Sides/(BRows*BCols)/Pots,  
+                                              cond = ~ Heat*Salinity*Varieties),  
+                              data = split.lay) 
> summary(split.canon, which.criteria=c("aeff", "order")) 
Summary table of the decomposition for tests & cond (based on adjusted quantities) 
 
 Source.tests                   df1 Source.cond             df2 aefficiency order 
 GHouse                           1 Heat                      1      1.0000     1 
 Sides[GHouse]                    2  
 BRows[GHouse:Sides]              8                                               
 BCols[GHouse:Sides]              4 Salinity                  1      0.1111     1 
                                    Heat#Salinity             1      0.1111     1 
                                    Residual                  2                   
 BRows#BCols[GHouse:Sides]        8 Salinity                  1      0.8889     1 
                                    Heat#Salinity             1      0.8889     1 
                                    Residual                  6                   
 Pots[GHouse:Sides:BRows:BCols] 264 Varieties                11      1.0000     1 
                                    Heat#Varieties           11      1.0000     1 
                                    Salinity#Varieties       11      1.0000     1 
                                    Heat#Salinity#Varieties  11      1.0000     1 
                                    Residual                220                   
The design is not orthogonal 
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Matches the  
nested.recipients 

Heat is confounded 
with GHouse, an 
effect of the 
pseudoreplication. 

Salinity (& 
Heat#Salinity) are 
not orthogonal, but 
most information is 
confounded with 
Brows#Bcols[GH:S]. 
(Design property) 

All Varieties 
effects are 
orthogonal. But all orders are one and so it is balanced. 



Prior allocation model for the grapevine design 
Summary table of the decomposition for tests & cond (based on adjusted quantities) 
 
 Source.tests                   df1 Source.cond             df2 aefficiency order 
 GHouse                           1 Heat                      1      1.0000     1 
 Sides[Ghouse]                    2 
 BRows[GHouse:Sides]              8                                               
 BCols[GHouse:Sides]              4 Salinity                  1      0.1111     1 
                                    Heat#Salinity             1      0.1111     1 
                                    Residual                  2                   
 BRows#BCols[GHouse:Sides]        8 Salinity                  1      0.8889     1 
                                    Heat#Salinity             1      0.8889     1 
                                    Residual                  6                   
 Pots[GHouse:Sides:BRows:BCols] 264 Varieties                11      1.0000     1 
                                    Heat#Varieties           11      1.0000     1 
                                    Salinity#Varieties       11      1.0000     1 
                                    Heat#Salinity#Varieties  11      1.0000     1 
                                    Residual                220                   
The design is not orthogonal 
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The confounding of 
Heat and GHouse, is 
exhaustive in that all 
GHouse information is 
mixed up with Heat 
differences (there is no 
Residual GHouse 
Residual). 

 To have a prior allocation model that will fit, one of GHouse and Heat must be removed. 

That is Heat and 
GHouse are 
inextricably mixed up 
together so that one 
cannot say which part 
of any difference 
associated with either 
factor is due one or 
other of the factors.  
It means that the initial 
allocation model will 
not fit. 



Prior allocation model for the grapevine design 

Summary table of the decomposition for tests & cond (based on adjusted quantities) 
 
 Source.tests                   df1 Source.cond             df2 aefficiency order 
 GHouse:Sides                     3 Heat                      1      1.0000     1 
                                    Residual                  2 
 BRows[GHouse:Sides]              8                                               
 BCols[GHouse:Sides]              4 Salinity                  1      0.1111     1 
                                    Heat#Salinity             1      0.1111     1 
                                    Residual                  2                   
 BRows#BCols[GHouse:Sides]        8 Salinity                  1      0.8889     1 
                                    Heat#Salinity             1      0.8889     1 
                                    Residual                  6                   
 Pots[GHouse:Sides:BRows:BCols] 264 Varieties                11      1.0000     1 
                                    Heat#Varieties           11      1.0000     1 
                                    Salinity#Varieties       11      1.0000     1 
                                    Heat#Salinity#Varieties  11      1.0000     1 
                                    Residual                220                   
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 GHouse is the  obvious choice so that Heat and its interactions are retained. 
 Heat * Salinity * Varieties | Ghouses + Ghouses:Sides + Ghouses:Sides:BRows 

+ Ghouses:Sides:BCols + Ghouses:Sides:Brows:BCols + 
Ghouses:Sides:Brows:Bcols:Pots. 

 

This model is a ”model 
of convenience”: it 
gives a fit.  
However, it does not 
contain all the 
pertinent sources of 
variation in the 
experiment. 

This revised anatomy 
shows that Sides 
variability will be used 
for judging overall 
Heat differences; this 
is very likely to be an 
underestimate of the 
variability affecting 
Heat differences.  



7.  Summary of confounding and aliasing 
 In comparative experiments,  

 there is always some confounding; and 
 there may be some aliasing. 

 All allocation, be it systematic, haphazard, spatial or randomized, 
results in confounding: 
 designAnatomy does not distinguish between different types of allocation. 
 Properly replicated treatments can be systematically allocated. 

o The danger with systematic replication is that it will be confounded with any systematic 
trends associated with the factors to which it is allocated. 

 Pseudoreplication manifests as exhaustive confounding. 
 Numeric covariates introduce partial aliasing (nonorthogonality 

between allocated terms). 
 Missing values introduce partial aliasing and confounding. 65 



Practical session for Nonorthogonal experimental 
design in R 

1. Using dae and od to obtain randomized layouts for orthogonal 
designs. 

i. An alpha design 
ii. A BIBD. 
iii. A nonorthogonal row-column design for a Casuarina trial. 
iv. A 25-line wheat experiment from Gilmour et al. (1995). 
v. A small environmental experiment. 

2. Again, you have only to follow the script that has been given. 
3. There are some questions for you to answer about each design. 

66 
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