
Designing comparative
experiments using R
(Chris Brien and Sam Rogers)

II. Nonorthogonal experimental design

Outline

1. Designing nonorthogonal experiments and the alphabet of
efficiency measures.

2. Using the concepts for balanced designs.
3. Using the concepts for unbalanced designs.

a. A partially balanced incomplete-block design
b. A wheat experiment from Gilmour et al. (1995)
c. A plant accelerator design

4. Summary of constructing nonorthogonal designs.
5. What happens when there is missing data?
6. Systematic allocation and pseudoreplication.
7. Summary of confounding and aliasing.

2

Recall the paradigm for designing experiments
(Brien, 2017)

3

Factor-
allocation
diagram

Anatomy of
a design

Initial
allocation

model

Homogeneous
allocation

model

Prior
allocation

model

Anticipated
model

Design
selection &
construction

Anticipated model
determined in
consultation with
the researcher.

Select a design that
is optimal for the
anticipated model.

Depicts the
allocation.

Shows the confounding
and aliasing inherent in
the design.

Model derived from
the allocation
– should match the
anticipated model.

Modified versions of the initial
allocation model.

1. Designing nonorthogonal experiments

 For nonorthogonal experiments, getting the initial systematic design
is generally more difficult than for orthogonal experiments.
 Cannot just deploy a standard known design;
 Will demonstrate a number of approaches.

 Our dae friends, designRandomize and designAnatomy, play the
same role as for orthogonal experiments.
(designRandomize is not used for spatial designs.)

 How do we know that the design that we have is good?
 Design optimality is the answer.
 There is A-, D-, C-, E-, G-, M- and S-optimality. Which one?

4

Design optimality
 For comparative experiments, A-optimality is the favoured optimality criterion.

 The definition of A-optimality is that it minimizes the total variance of the predictions or
Prediction Error Variance (PEV) (Kiefer, 1959)

 The PEV is the same as the average variance of pairwise differences (AVPD):
o when terms to be optimized (e.g. Treatments) are fixed;
o not when the terms to be optimized are random.
o when the residual model is not iid i.e. correlated residuals are OK.

 Often suggested that minimum AVPD is the criterion of choice for comparative
experiments.
 So they will be A-optimal if the terms to be optimized are fixed;
 But what if the terms to be optimized are random?

o Is AVPD appropriate for random factors?
o Given the effects are random, conducting inference on a pair of differences is not meaningful.
o So PEV seems a reasonable measure, but it is not the same as AVPD; nonetheless AVPD is used.

 As previously mentioned, often fixed-model A-optimal designs are sought for
comparative experiments:
 All model terms are assume fixed, except the residuals. 5

2. Using the concepts for balanced designs
 Suppose have 20 plots arranged in a grid of 4 rows × 5 columns.
 We want to assign 5 lines to the 20 plots.
 Again, what design to use?

 Completely Randomized CRD,
 Randomized Complete or Incomplete Block (RCBD or IBD), or
 Youden Square Design (YSD) (an LSD is impossible)?

 Already know that, irrespective of the design:
 the unit factors are Rows, Columns and the treatment factor is Lines.

 Suppose that Row and Column differences are probable.
 What is the anticipated model?

6

 Lines + Rows + Columns | Rows:Columns — same as for an LSD

2(a) Row and Column differences likely in 4 x 5 grid
 Need a design that allows for Row and Column main effects.

 Are Rows and Columns crossed or nested? Why?
o Crossed because expect consistent differences between Rows and between Columns.

 YSD is a design that is optimal for this model:
 Construct by taking a Latin square and omitting a row.

 Use of designRandomize (and designLatinSqrSys) to get a design:
b <- 4
t <- 5
> #'## Construct a systematic layout and obtain the randomized layout
> YSD.sys <- cbind(fac.gen(list(Rows=b, Columns=t)),
+ Lines = factor(designLatinSqrSys(t)[1:(b*t)], labels = LETTERS[1:t]))
> YSD.lay <- designRandomize(allocated = YSD.sys["Lines"],
+ recipient = YSD.sys[c("Rows", "Columns")],
+ seed = 95332)
> #'## Output the layout
> YSD.lay

7

Extract column subsets
of data.frames.

Generate Latin square,
but take only first 20 of
25 values (4 rows x 5
columns).

YSD.lay
 Rows Columns Lines
1 1 1 C
2 1 2 D
3 1 3 A
4 1 4 B
5 1 5 E
6 2 1 A
7 2 2 B
8 2 3 D
9 2 4 E
10 2 5 C
11 3 1 E
12 3 2 A
13 3 3 C
14 3 4 D
15 3 5 B
16 4 1 D
17 4 2 E
18 4 3 B
19 4 4 C
20 4 5 A 8

The initial allocation-based mixed model

 From the factor allocation diagram, the initial allocation model is:

9

Lines | Rows + Columns + Rows:Columns

 This model and the anticipated model are different — here Rows and Columns
are random.

 The Rows and Columns terms could be moved to the fixed model to form a
homogeneous allocation model,
o which in turn may become the prior allocation model.

20 plots

4 Rows
5 Columns

5 lines

5 Lines 

 The factor allocation diagram is:

Working out the confounding

 What are the recipient (unit) sources?
 Rows, Columns & Rows#Columns

 Lines will be confounded with which
recipient (unit) sources?
 With Columns & Rows#Columns (cf. LSD).

 Can determine this by investigating the relationships between two
sets of projectors, those for lines and those for plots:
 one source projector for each term in the initial allocation model;
 {QL} and {PR, PC, PR#C}.

 Require the eigenvalues of PQLP for all 3 Ps.
 They are calculated and statistical summaries of them are tabulated

by designAnatomy. 10

20 plots

4 Rows
5 Columns

5 lines

5 Lines 

Check properties using designAnatomy
> YSD.canon <- designAnatomy(formulae = list(plots = ~ Rows*Columns,
+ lines = ~ Lines),
+ data = YSD.lay)
> summary(YSD.canon)

Summary table of the decomposition for plots & lines (based on adjusted
quantities)

 Source.plots df1 Source.lines df2 aefficiency eefficiency order
 Rows 3
 Columns 4 Lines 4 0.0625 0.0625 1
 Rows#Columns 12 Lines 4 0.9375 0.9375 1
 Residual 8

The design is not orthogonal

11

but the order is one and
so the design is balanced

For the first time,
 Lines occurs twice in an analysis;
 neither the aefficiency nor the eefficiency are 1;
 Lines is partially confounded with two sources.

The design’s properties
Summary table of the decomposition for plots & lines (based on adjusted
quantities)

 Source.plots df1 Source.lines df2 aefficiency eefficiency order
 Rows 3
 Columns 4 Lines 4 0.0625 0.0625 1
 Rows#Columns 12 Lines 4 0.9375 0.9375 1
 Residual 8

The design is not orthogonal

12

 Thus there are 4 nonzero eigenvalues for PCQLPC and
for PRCQLPRC:
 For PCQLPC, all are 0.0625 (1/16);
 For PRCQLPRC, all are 0.9375 (15/16);
 Being 1st-order balanced, the efficiencies sum to 1.

 15/16 of the information for Lines is confounded with
Rows#Columns.
 Generally, prefer the intrablock or intrarow-

intracolumn efficiency to be greater than, say, 0.75.

 All 4 df for Lines are confounded
with both Columns and
Rows#Columns;

 None are confounded with Rows.

To combine or not combine information?
 Lines, being confounded with Columns and with Rows#Columns,

there are available two estimates of the Lines effects:
 It is expected that those estimated from Columns differences would have

greater variability than those estimated from Rows#Columns. Why?

 Should these two sets of estimates be combined?
 In this case, not a lot would be lost by relying on the intrarow-intracolumn

estimates: actually, only 1/16 of the information.
 The advantage is that the more variable inter-column estimates do not

contaminate the less variable intrarow-intracolumn estimates.
 In the context of mixed modelling,

 The combined estimates are produced when Columns is random.
 The intrarow-intracolumn estimates are produced when Columns is fixed.
 That is, in deciding whether Columns is fixed or random, consider whether

intrablock or combined estimates of Lines are required. 13

What if you don’t know what design to use here?
 Look up Cochran and Cox (1957) [C&C] – but they are called incomplete Latin

squares, or use agicolae (De Mendiburu, 2019).
 However, you have to know what you the design that you need.

 Use computer searching: CycDesigN, SAS or od.
 Both the standalone software CycDesigN and the R package od (Butler, 2019) search for a

design that minimizes the average variance of pairwise differences (AVPD).
o CycDesigN searches for fixed-model A-optimal designs;
o od searches for mixed-model A-optimal designs;

 Provided the terms being optimized (treatments) are fixed, these designs are A-optimal
because the AVPD equals the PEV.
o Otherwise, they may not be A-optimal.

 The harmonic mean of the efficiency factors, the A-efficiency, is proportional to the PEV when
the only random term is the residual (or identity) term.

 SAS searches for a D-optimal design.
o Minimizes the volume of the confidence ellipsoid of estimates (not necessarily A-optimal).
o The product of the reciprocals of the efficiency factors is minimized.
o D-optimal designs are used when response curve parameters are to be estimated. 14

Using od to obtain an optimal design
 The od function has the following arguments:

 fixed, random and residual are formulae for specifying the mixed model.
 permute is a formula with a single term that is to be optimized by swapping

values for the term between rows of its design matrix.
 swap is a formula for specifying a term for restricting the permutes to be within

its levels.
 search specifying a search strategy: random, tabu (records rejected

designs), randomwalk (as for random, but accepts a non-improving design
with proability P) and tabu+rw (combined).

 maxit gives the number of tabu loops or random interchanges.
 start.values allows one to specify the values of variance parameters,

without beginning a search.
 data is a data.frame containing an initial design (obligatory as used to resolve

terms in formulae). 15

Using od to obtain an optimal 4 x 5 grid design
> #'### Initialize with a randomized RCBD layout
> R4C5.ini <- cbind(fac.gen(list(Rows=b, Columns=t)),
+ Lines = factor(rep(1:t, times = b), labels = LETTERS[1:t]))
> R4C5.ini <- designRandomize(allocated = R4C5.ini["Lines"],
+ recipient = R4C5.ini[c("Rows", "Columns")],
+ nested.recipients = list(Columns = "Rows"),
+ seed = 7851)
> #'### Get the od design
> R4C5.od <- od(fixed = ~ Rows + Columns + Lines,
+ permute = ~ Lines,
+ search = "tabu", maxit = 25,
+ data = R4C5.ini)
Done set up; elapsed = 0.00
Initial A-value = 0.952475 (5 A-equations; rank C 4)
A-value after tabu loop 1 is 0.569492
A-value after tabu loop 2 is 0.558333
A-value after tabu loop 3 is 0.533333
...
A-value after tabu loop 25 is 0.533333
Hash table size 30
Final A-value after 25 tabu iterations: 0.533333
Done optimise; elapsed = 0.02

16

> R4C5.lay <- R4C5.od$design
> #'### Independently calculate the A-measure
> (designAmeasures(mat.Vpredicts(target = ~ Lines -1,
+ fixed = ~ Rows + Columns,
+ design = R4C5.lay)))
 all
all 0.5333333

 The AVPD for the row-column design (0.53)
is almost half that for the RCBD (0.95).

The od design
> #'### Randomize design according to the plots structure
> R4C5.lay <- designRandomize(allocated = R4C5.lay["Lines"],
+ recipient = R4C5.lay[c("Rows", "Columns")],
+ seed = 65460)

17

 This randomization ensures a valid randomization.
o That is, a randomization that is randomly selected from all possible randomizations.

> #'### Calculate the A-measure of the randomized design
> (designAmeasures(mat.Vpredicts(target = ~ Lines -1,
+ fixed = ~ Rows + Columns,
+ design = R4C5.lay)))
 all
all 0.5333333

 No change in the AVPD.

The anatomy of the od design
> #'### Check properties of the od layout
> R4C5.canon <- designAnatomy(formulae = list(plots = ~ Rows*Columns,
+ lines = ~ Lines),
+ data = R4C5.lay)
> summary(R4C5.canon)

Summary table of the decomposition for plots & lines (based on adjusted quantities)

 Source.plots df1 Source.lines df2 aefficiency eefficiency order
 Rows 3
 Columns 4 Lines 4 0.0625 0.0625 1
 Rows#Columns 12 Lines 4 0.9375 0.9375 1
 Residual 8

The design is not orthogonal

 Same as the Youden square anatomy.

18
Each treatment occurs in 4 out of 5
columns and so the design is a YSD.

> #'## Try a starting design in which row-column randomization is used on a systematic design
> R4C5.ini <- designRandomize(allocated = data.frame(Lines =
+ factor(rep(1:t, times = b),
+ labels = LETTERS[1:t])),
+ recipient = list(Rows=b, Columns=t),
+ seed = 95332)

> #'### Get the od design
> R4C5.od <- od(fixed = ~ Rows + Columns + Lines,
+ permute = ~ Lines,
+ search = "tabu", maxit = 25,
+ data = R4C5.ini)
Done set up; elapsed = 0.00
Error in od(fixed = ~Rows + Columns + Lines,
permute = ~Lines, search = "tabu", :
 Disconnected design of order 4

Can choose the wrong starting design

19

 At least some DF for the fixed permute term
are confounded with other fixed terms:
 All DF Lines with Columns here;

 Solution:
 Choose a connected design (full Lines df at

least partially confounded with Rows#Columns.
 Or, use a mixed model (not here).

Optimal systematic design in, optimal systematic
design out
YSD.sys <- cbind(fac.gen(list(Rows=b, Columns=t)),
 Lines = factor(designLatinSqrSys(t)[1:(b*t)], labels = LETTERS[1:t]))
R4C5.sys.od <- od(fixed = ~ Rows + Columns + Lines,
 permute = ~ Lines,
 search = "tabu", maxit = 25,
 data = YSD.sys)
plotR4C5(R4C5.sys.od$design)

20

Take home message:
od produces an optimal design,
not a randomized design.

Some points to remember in using od
 The treatment terms cannot be confounded with fixed unit terms:

 e.g. Lines confounded with Columns.
 od does not necessarily produce a properly randomized design:

 That is, one randomly selected from all possible randomizations;
 Supply a systematic optimal design: od will return it unmodified;
 Can use designRandomize after od when independent errors are assumed;

otherwise before od.

 The computed A-value (AVPD) can be checked, or the value under
an alternative model calculated, with
designAmeasures(mat.Vpredicts(…)).
 mat.Vpredicts calculates the predictions variance matrix and
designAmeasures calculates the AVPD from the matrix.

 Some designs are optimal under both fixed and random units terms:
 orthogonal, balanced (incomplete-) block, (most generalized) Youden square

and the lattice square designs are A-optimal under fixed and mixed models. 21

3. Using the concepts for unbalanced designs
3(a) A partially balanced incomplete-block design (PBIBD) from

C&C (p.379)
 This design is suitable for a situation in which:

 the number of treatments is 6,
 each treatment is to be replicated 4 times,
 the anticipated model is Treatments | Blocks + Blocks:Units, and
 the number of units per block restricted to 4.

22

6 treatments

6 Treatments 6 Blocks
4 Units in B

24 units



Blocks
Units I II III IV V VI

1 1 2 3 4 5 6
2 4 5 6 1 2 3
3 2 3 1 5 6 4
4 5 6 4 2 3 1

PBIBD randomized layout
> #'## Input the systematic design
> b <- 6
> k <- 4
> t <- 6
> PBIBD2.sys <- cbind(fac.gen(list(Blocks = b, Units = k)),
+ Treatments = factor(c(1,4,2,5,
+ 2,5,3,6,
+ 3,6,1,4,
+ 4,1,5,2,
+ 5,2,6,3,
+ 6,3,4,1)))
> #'## Randomize the systematic design
> PBIBD2.lay <- designRandomize(allocated = PBIBD2.sys["Treatments"],
+ recipient = PBIBD2.sys[c("Blocks", "Units")],
+ nested.recipients = list(Units = "Blocks"),
+ seed = 98177)

23

PBIBD properties
>#'## Compute the anatomy
> PBIBD2.canon <- designAnatomy(formulae = list(unit = ~ Blocks/Units,
+ trt = ~ Treatments),
+ data = PBIBD2.lay)
> summary(PBIBD2.canon, which.criteria = c('aeff', 'xeff', 'eeff','order', 'dforth'))

Summary table of the decomposition for unit & trt (based on adjusted quantities)

 Source.unit df1 Source.trt df2 aefficiency xefficiency eefficiency order dforthog
 Blocks 5 Treatments 2 0.2500 0.2500 0.2500 1 0
 Residual 3
 Units[Blocks] 18 Treatments 5 0.8824 1.0000 0.7500 2 3
 Residual 13

The design is not orthogonal

24

 What are the eigenvalues for PBUQLPBU?
 Three are one and two are 0.75 for a harmonic mean of 0.8824.

 That 88% of Lines information confounded with Units[Blocks] is good.

PBIBD with unique Units levels
> PBIBD2.lay$AUnits <- with(PBIBD2.lay, fac.combine(list(Blocks,Units)))
> levels(PBIBD2.lay$AUnits)
 [1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" "13" "14" "15" "16" "17" "18"
[19] "19" "20" "21" "22" "23" "24"
> #'### Blocks + AUnits
> PBIBD2U.canon <- designAnatomy(formulae = list(unit = ~ Blocks + AUnits,
+ trt = ~ Treatments),
+ data = PBIBD2.lay)
> summary(PBIBD2U.canon, which.criteria = c('aeff', 'xeff', 'eeff','order', 'dforth'))

Summary table of the decomposition for unit & trt (based on adjusted quantities)

 Source.unit df1 Source.trt df2 aefficiency xefficiency eefficiency order dforthog
 Blocks 5 Treatments 2 0.2500 0.2500 0.2500 1 0
 Residual 3
 AUnits[Blocks] 18 Treatments 5 0.8824 1.0000 0.7500 2 3
 Residual 13
The design is not orthogonal
> #'### Blocks/AUnits
> PBIBD2U.canon <- designAnatomy(formulae = list(unit = ~ Blocks/AUnits,
+ trt = ~ Treatments),
+ data = PBIBD2.lay) 25

Produces exactly the
same anatomy.

AUnits = All Units

Using od to get an A-optimal design
> #'### Initialize with a randomized layout
> PBIBD.ini <- cbind(fac.gen(list(Blocks=b, Units=k)),
+ Treatments = factor(rep(1:t, times = b*k/t), labels = LETTERS[1:t]))
> PBIBD.ini <- designRandomize(allocated = PBIBD.ini["Treatments"],
+ recipient = PBIBD.ini[c("Blocks", "Units")],
+ nested.recipients = list(Units = "Blocks"),
+ seed = 4794)
> #'### Get the od design
> PBIBD.od <- od(fixed = ~ Blocks + Treatments,
+ permute = ~ Treatments,
+ search = "tabu", maxit = 25,
+ data = PBIBD.ini)
Done set up; elapsed = 0.00
Initial A-value = 0.566667 (6 A-equations; rank C 5)
A-value after tabu loop 1 is 0.559487
A-value after tabu loop 2 is 0.559487
A-value after tabu loop 3 is 0.559487
…
Final A-value after 25 tabu iterations: 0.559487
Done optimise; elapsed = 0.02 26

> (designAmeasures(
+ mat.Vpredicts(target = ~ Treatments -1,
+ fixed = ~ Blocks,
+ design = PBIBD2.lay)))
 all
all 0.5666667

AVPD for C&C design.

PBIBD od randomization
> PBIBD.lay <- PBIBD.od$design
> #'## Randomize the od design
> PBIBD.lay <- designRandomize(allocated = PBIBD.lay["Treatments"],
+ recipient = PBIBD.lay[c("Blocks", "Units")],
+ nested.recipients = list(Units = "Blocks"),
+ seed = 13332)

27

PBIBD od design properties
> #'### Check properties of the od layout
> PBIBD.canon <- designAnatomy(formulae = list(plots = ~ Blocks/Units,
+ trts = ~ Treatments),
+ data = PBIBD.lay)
> summary(PBIBD.canon, which.criteria = c('aeff', 'xeff', 'eeff','order', 'dforth'))

Summary table of the decomposition for plots & trts (based on adjusted quantities)

 Source.plots df1 Source.trts df2 aefficiency xefficiency eefficiency order dforthog
 Blocks 5 Treatments 4 0.0937 0.1875 0.0625 2 0
 Residual 1
 Units[Blocks] 18 Treatments 5 0.8937 1.0000 0.8125 3 1
 Residual 13

The design is not orthogonal

28

 The od design is (nearer) A-optimal, with
 a higher A-efficiency than the PBIBD2 (0.8937 versus 0.8824),
 three rather than two different efficiency factors,
 the range of the efficiency value is less

(min of 0.75 versus 0.8125).

This shows that, in contrast to a
BIBD, a PBIBD of order 2 is not
necessarily A-optimal.
Which one to use?
 The PBIBD2 will have only 2

SEM values and so 3 SEDs.
 The od design would have 6

SEDs, but they would cover a
narrower range.

More than A-value to consider.

3(b) A wheat experiment (Gilmour et al., 1995)
 Investigates 25 varieties of wheat.
 A balanced lattice square on a 10 ´ 15 grid from C&C.
 Six reps, each 5 rows ´ 5 columns
 It is an example in the asreml manual,

and the asremlPlus manual and
the Wheat vignette:
vignette(package = 'asremlPlus').

 Factor-allocation diagram

29 Sr = SuperRows, Sc = SuperColumns

25 Varieties

25 varieties

2 SuperRows
3 SuperColumns
5 Rows in Sr, Sc
5 Columns in Sr, Sc

150 plots



How is this design to be randomized?

The wheat experiment — models

 Initial allocation model:
 Varieties | SRows + SColumns + SRows:SColumns +

 SRows:SColumns:Rows + SRows:SColumns:Columns +
 SRows:SColumns:Rows:Columns.

 The balanced lattice square is A-optimal for this model.
 No term for differences between whole rows and whole columns, because

not randomized by them.
o If had, then structure (SRows/Rows) * (SColumns/Columns), not (SRows*SColumns) / (Rows*Columns). 30

 Allocated Þ fixed;
Recipient Þ random.

 Take all combinations of the
factors within a panel, subject to
the restriction that a nested factor
cannot occur without its nesting
factor.

allocated recipient

A randomization model

An identity (or residual) term
– it uniquely indexes the units.

25 Varieties

25 varieties

2 SuperRows
3 SuperColumns
5 Rows in Sr, Sc
5 Columns in Sr, Sc

150 plots



The wheat experiment – models (revised)

 Initial allocation model:
 Varieties | SRows*SColumns + SRows:SColumns:Rows + SRows:SColumns:Columns

+ SRows:SColumns:Rows:Columns.
 Homogeneous allocation model:

 Might make SRows*SColumns fixed.
 Prior allocation model:

 Varieties | SRows*SColumns + SRows:SColumns:Rows +
SRows:SColumns:Columns + units + ar1(SRows:Rows):ar1(SColumns:Columns).

 The prior allocation model is not a randomization model, but a randomization-
based model. 31

allocated recipient

nugget variance

25 Varieties

25 varieties

2 SuperRows
3 SuperColumns
5 Rows in Sr, Sc
5 Columns in Sr, Sc

150 plots



spatial residual
correlation

> Wheat.canon <- designAnatomy(formulae = list(units = ~ (SRows:SColumns)/(Rows*Columns),
+ trt = ~ Variety),
+ data = Wheat.dat)
> summary(Wheat.canon, which.criteria = c("aeff", "order"))
Summary table of the decomposition for units & trt (based on adjusted quantities)
 Source.units df1 Source.trt df2 aefficiency order
 SRows:SColumns 5
 Rows[SRows:SColumns] 24 Variety 24 0.1667 1
 Columns[SRows:SColumns] 24 Variety 24 0.1667 1
 Rows#Columns[SRows:SColumns] 96 Variety 24 0.6667 1
 Residual 72
The design is not orthogonal
> Wheat.RC.canon <- designAnatomy(formulae = list(units = ~ ARows*AColumns,
+ trt = ~ Variety),
+ data = Wheat.dat)
> summary(Wheat.RC.canon)
Summary table of the decomposition for units & trt (based on adjusted quantities)
Source.units df1 Source.trt df2 aefficiency eefficiency order
 ARows 9 Variety 8 0.1667 0.1667 1
 Residual 1
 AColumns 14 Variety 12 0.1667 0.1667 1
 Residual 2
 ARows#AColumns 126 Variety 24 0.8452 0.6732 18
 Residual 102

The wheat experiment - properties

However, Gilmour et al.
(1995) and Butler et al.
(2018) have ignored
SRows:SColumns (Reps).
What happens?

32

Not randomization-based:
 Pushes down the 53 DF of the

first 3 sources from the lattice:
o into all units sources;
o some in ARow#ACol Residual.

 More Variety information
confounded with Row#Col, but ...

Based on initial or homogeneous
allocation model, with
SRows*SColumns combined.

ARow = SRows:Rows; (A = All)
AColumn = SColumns:Columns.

A-optimality of the design
 The resolved design has the advantage that SRows*Scolumns (Replicate)

differences do not contribute to the variability of the Varieties.
 It is the A-optimal resolved design.

 It is not the A-optimal row-column design, i.e. under the model:
 ARows + AColumns + Varieties | Rows:Columns.

 Nor is it A-optimal for the prior allocation model with :
 Varieties | SRows*SColumns + SRows:SColumns:Rows + SRows:SColumns:Columns + units

+ ar1(SRows:Rows):ar1(SColumns:Columns).
 For these alternative models, use od to search for (near) A-optimal designs.

33

3(c) A Plant Accelerator
(PA) design

 Split-unit design from od.
 75 lines assigned to

main units (2 carts) using
a blocked, row-column
design:
 6 blocks of 4 Lanes;
 21 NAM lines (blue) on

4 main units each;
 52 NAM lines (grey) on

3 main units each;
 Scout & Gladius (green)

on 12 main units each.
 2 Conditions randomized

to pairs of carts (not shown). 34

The anticipated model

 Zones + Lines + Conditions +
Lines:Conditions |
MainPositions +
Zones:MainPositions +
Zones:MainPositions:Rows +
Zones:MainPositions:Rows:Carts.

35

Zones-MainPositions cell

 Zones are the blocks of 4 Lanes;
 MainPositions are the columns of

pairs of carts;
 Rows are the 4 lanes within a Zone;
 Zones:MainPositions:Rows are the

main units.
 Carts are the pairs of Carts within a

Zones:MainPositions:Rows
combination; they are the sub-units.

Check properties of the PA design
> PA.canon <- designAnatomy(formulae = list(carts = ~ (Zones*MainPositions)/Rows/Carts,
+ trts = ~ Lines * Conditions),
+ data = PA.lay)
> summary(PA.canon, which=c("aeff", "eeff", "order", "dfor"))

Summary table of the decomposition for carts & trts (based on adjusted quantities)

 Source.carts df1 Source.trts df2 aefficiency eefficiency order dforthog
 Zones 5 Lines 5 0.1497 0.1254 5 0
 MainPositions 10 Lines 10 0.2101 0.1724 10 0
 Zones#MainPositions 50 Lines 50 0.1209 0.0193 50 0
 Rows[Zones:MainPositions] 198 Lines 74 0.6764 0.2746 66 9
 Residual 124
 Carts[Zones:MainPositions:Rows] 264 Conditions 1 1.0000 1.0000 1 1
 Lines#Conditions 74 1.0000 1.0000 1 74
 Residual 189
The design is not orthogonal

36

 The information about Lines confounded with Rows[Zones:MainPositions] is low.
o However, all 74 df for Lines confounded with it and so Lines is connected.

 It is anticipated that the differences between MainPositions can be described in terms of a
linear trend across MainPositions and that Zones:MainPositions can be ignored.
o Could optimize for linear trend by replacing MainPositions with a centred numeric covariate, say xMainPosn.
o This tends to push extra replicates to the first and last MainPositions, which is not optimal for curved trends.
o So optimize for factor MainPositions and check properties for numeric covariate xMainPosn.

Linear trend across MainPositions
> PA.xMainPosn.canon <- designAnatomy(list(cart=~ Zones/MainUnits/Carts,
+ treat=~ xMainPosn + Lines * Conditions),
+ data = PA.lay)
> summary(PA.xMainPosn.canon, which=c("aeff", "eeff", "order", "dfor"))

Summary table of the decomposition for cart & treat (based on adjusted quantities)

 Source.cart df1 Source.treat df2 aefficiency eefficiency order dforthog
 Zones 5 Lines 5 0.1500 0.1255 5 0
 Mainunits[Zones] 258 xMainPosn 1 1.0000 1.0000 1 1
 Lines 74 0.9879 0.8217 6 69
 Residual 183
 Carts[Zones:Mainunits] 264 Conditions 1 1.0000 1.0000 1 1
 Lines#Conditions 74 1.0000 1.0000 1 74
 Residual 189

Table of (partial) aliasing between sources derived from the same formula

 Source df Alias In aefficiency eefficiency order dforthog
 Lines 74 xMainPosn treat 0.9960 0.7687 2 73
 Lines#Conditions 149 xMainPosn treat 0.9980 0.7687 2 148

The design is not orthogonal

37

More importantly the majority of the rest of the information about Lines,
is available from Rows[Zones:MainPositions] (main units);
(at least 82%; on average 98.8%).

Clearly, Lines is not
orthogonal to a linear trend
in xMainPosn. The
aliasing is moderate (23%
of one Lines df is lost).

Replace 11 MainPositions
with 44 MainUnits and
include a covariate.

Using od to get a design
— initial main-unit design
 Aim to balance between 6 Zones the numbers of

 RILs (1:21) replicated 4 times (blue),
 Parents (74:75) replicated 12 times (green),
 RILs (22:73) replicated 3 times (grey).

> b <- 6
> r <- 4
> c <- 11
> maxit <-25
> search <- "tabu“
> main.sys <- cbind(fac.gen(list(Zones = b, Rows = r, MainPositions = c)),
+ Lines = factor(c(1:14, 74:75, 74:75, 22:47, #Z1
+ 15:21, 1:7, 74:75, 74:75, 48:73, #Z2
+ 8:21, 74:75, 74:75, 22:47, #Z3
+ 1:14, 74:75, 74:75, 48:73, #Z4
+ 15:21, 1:7, 74:75, 74:75, 22:47, #Z5
+ 8:21, 74:75, 74:75, 48:73))) #Z6
> #'### Randomize systematic design
> main.sys <- designRandomize(allocated = main.sys["Lines"],
+ recipient = main.sys[c("Zones", "Rows", "MainPositions")],
+ nested.recipients = list(Rows = c("Zones", "MainPositions")),
+ seed = 71598)

38

Zones-MainPositions cell

The balancing is not
essential, but an attempt
to ensure that a balanced
design is considered.

Recall the anticipated
model

 Zones + Lines + Conditions +
Lines:Conditions |
MainPositions + Zones:MainPositions +
Zones:MainPositions:Rows +
Zones:MainPositions:Rows:Carts.

 Several random terms.
 By default od assumes that the variance

component for Zones:MainPositions:Rows:Carts is one and the rest are 0.1 times it.
o That is, other than the residual, the components are small.
o Suppose this is OK, except that MainPositions is likely to be 0.5.
o Zones fixed is equivalent to assuming that the variance component is infinite.

39

Zones-
MainPositions cell

Using od to set variance parameters for the main-
unit design
> #'### Set variance parameters
> main.ini <- od(fixed = ~ Zones + Lines,
+ random = ~ MainPositions + Zones:(Rows + MainPositions),
+ permute = ~ Lines,
+ start.values = TRUE,
+ data = main.sys)
> vp.table <- main.ini$vparameters.table
> vp.table$Value[1] <- 0.5
> (vp.table)
 Component Value
1 MainPositions 0.5
2 Zones:Rows 0.1
3 Zones:MainPositions 0.1
4 units!R 1.0

40

With this argument, returns an object
that includes a variance parameter table.

MainPositions will be set
to 0.5, as desired.

Using od to get a near-A-optimal main-unit design
> #'### Optimize
> main.od <- od(fixed = ~ Zones + Lines,
+ random = ~ MainPositions + Zones:(Rows + MainPositions),
+ permute = ~ Lines,
+ maxit = maxit, search = search,
+ G.param = vp.table,
+ data = main.sys)
Done set up; elapsed = 0.00
Initial A-value = 1.035331 (75 A-equations; rank C 74)
A-value after tabu loop 1 is 0.707094
A-value after tabu loop 2 is 0.706797
A-value after tabu loop 3 is 0.706732
...
A-value after tabu loop 25 is 0.706413
Hash table size 678
Final A-value after 25 tabu iterations: 0.706413
Done optimise; elapsed = 4.65
> main.lay <- main.od$design

41

Need to supply the variance parameter
table to the G.param argument.

How does the mixed-model design compare with a
fixed-model design for the mixed model?
> main.fix.od <- od(fixed = ~ Zones*MainPositions + Zones:Rows + Lines,
+ permute = ~ Lines,
+ maxit = maxit, search = search,
+ data = main.sys)
Done set up; elapsed = 0.00
Initial A-value = 1.664428 (75 A-equations; rank C 73)
A-value after tabu loop 1 is 0.929683
…
A-value after tabu loop 25 is 0.912422
Hash table size 555
Final A-value after 25 tabu iterations: 0.912422
Done optimise; elapsed = 4.62
> #'### Calculate A-measure under mixed model
> main.fix.lay <- main.fix.od$design
> designAmeasures(mat.Vpredicts(target = ~ Lines - 1,
+ fixed = ~ Zones -1,
+ random = ~ MainPositions + Zones:(Rows + MainPositions) - 1,
+ G = as.list(vp.table$Value[-4]),
+ design = main.fix.lay))
 all
all 0.7455769

42
This compares with 0.706043, and is 1.06 times the mixed-model design.
The sed would only be slightly inflated (3%).

Expand the main-unit design to a split-unit design
> #'### Expand main-unit design to add Carts with Conditions
> PA.sys <- cbind(fac.gen(list(Zones = b, Rows = r, MainPositions = c, Carts = 2)),
+ data.frame(Lines = factor(rep(main.lay$Lines, each=2), levels=1:75),
+ Conditions = factor(rep(1:2, times=264),
+ labels = c('0 NaCl','100 NaCl'))))
> #'### Randomize the whole design
> PA.lay <- designRandomize(allocated = PA.sys[c("Lines", "Conditions")],
+ recipient = PA.sys[c("Zones", "Rows", "MainPositions",
+ "Carts")],
+ nested.recipients = list(Rows = c("Zones", "MainPositions"),
+ Carts = c("Zones", "Rows",
+ "MainPositions")),
+ seed = 51412)
> PA.lay <- cbind(fac.gen(list(Lanes = nlanes, Positions = posns)),
+ PA.lay)
> #'### Add factors and variates
> PA.lay <- within(PA.lay,
+ {
+ xMainPosn <- as.numfac(MainPositions)
+ xMainPosn <- -(xMainPosn - mean(xMainPosn))
+ MainUnits <- fac.combine(list(Rows, MainPositions))
+ }) 43

Permute Carts within
Zones-Rows-MainPositions cell

Repermute
Rows

4. Summary of constructing nonorthogonal designs

 More difficult to identify the systematic design for a nonorthogonal
design.
 Not just a matter of using a standard, well-known design.

 Still use designRandomize to ensure a valid randomization and
designAnatomy to check the properties of any design.

 For this, it remains necessary to:
 Divide factors based on allocation of factors (as well as fixed/random).
 Identify the crossing and nesting, which depends not only on the innate

relationships, but also the model employed to account for anticipated variation.
 Numeric covariates introduce partial aliasing (nonorthogonality

between allocated terms).

44

Degrees of balance
 Three degrees of balance have been encountered in the designs presented:

1. Orthogonal, and so balanced: all canonical efficiency factors (nonzero eigenvalues) are
one;

2. Balanced, but nonorthogonal: some canonical efficiency factors are not one, however,
they take just one value for (i) any recipient source or (ii) any allocated source when
confounded with a particular recipient source.

3. Unbalanced and so must be nonorthogonal: the canonical efficiency factors for at least
one source of type (i) or (ii) above take more than one value.

 As we go down this list:
 the degree of balance decreases and the complexity of the analysis increases;

 One of the great advantages of balanced designs is that all the standard errors of
estimates of contrasts for a source of type (ii) will be equal.
 All contrasts are treated equally.
 Easier to present the results.
 However, not always achievable.

45

Identifying an optimal design

 Several methods available for selecting an optimal design:
 Deploy a standard design, like a randomized complete-block or split-unit

design, known to be optimal
 – designRandomize can be used to obtain layouts for these.

 Manually constructing a design, including the use of design keys for factorial
experiments (Patterson & Bailey, 1978), given enough knowledge of
combinatorics.

 Consult a catalogue of designs (e.g. Cochran and Cox, 1957; Hinkelmann &
Kempthorne, 2005; agricolae , de Mendiburu, 2019).

 Computer generation of designs:
o CycDesigN, od, SAS, JMP.

46

5. What happens when there is missing data?

 Suppose the 18th plot in the YSD is lost.
 How does this affect the design’s properties?

> #'## Set up a layout with a single missing value
> YSD.miss1.lay <- YSD.lay
> YSD.miss1.lay$Lines[18] <- NA
> #'## Get the anatomy of the layout
> YSD.miss1.canon <- designAnatomy(formulae = list(plots = ~ Rows*Columns,
+ lines = ~ Lines),
+ data = na.omit(YSD.miss1.lay))

47

Need an NA for the plot, but cannot
have an NA for designAnatomy.

The anatomy for a missing value
> summary(YSD.miss1.canon, which.criteria = c("aeff", "xeff", "eeff", "order"))
Summary table of the decomposition for plots & lines (based on adjusted quantities)

 Source.plots df1 Source.lines df2 aefficiency xefficiency eefficiency order
 Rows 3 Lines 1 0.0500 0.0500 0.0500 1
 Residual 2
 Columns 4 Lines 4 0.0444 0.1968 0.0189 3
 Rows#Columns 11 Lines 4 0.8948 0.9663 0.7681 3
 Residual 7

Table of (partial) aliasing between sources derived from the same formula
 Source df Alias In aefficiency xefficiency eefficiency order
 Columns 4 Rows plots 0.9870 1.0000 0.9500 2

The design is not orthogonal

48

Columns is not orthogonal to Rows;
it is partially aliased with Rows;
Columns is orthogonalized to Rows,
losing 1.3% in the process.

The anatomy for a missing value
> summary(YSD.miss1.canon, which.criteria = c("aeff", "xeff", "eeff", "order"))
Summary table of the decomposition for plots & lines (based on adjusted quantities)

 Source.plots df1 Source.lines df2 aefficiency xefficiency eefficiency order
 Rows 3 Lines 1 0.0500 0.0500 0.0500 1
 Residual 2
 Columns 4 Lines 4 0.0444 0.1968 0.0189 3
 Rows#Columns 11 Lines 4 0.8948 0.9663 0.7681 3
 Residual 7
The design is not orthogonal

49

Lines confounding is no
longer balanced.

Nor is it orthogonal to Rows.

Less Lines information confounded with
Rows#Columns (cf 0.9375 for the YSD).

Confounding versus aliasing
Summary table of the decomposition for plots & lines (based on adjusted quantities)
 Source.plots df1 Source.lines df2 aefficiency xefficiency eefficiency order
 Rows 3 Lines 1 0.0500 0.0500 0.0500 1
 Residual 2
 Columns 4 Lines 4 0.0444 0.1968 0.0189 3
 Rows#Columns 11 Lines 4 0.8948 0.9663 0.7681 3
 Residual 7

Table of (partial) aliasing between sources derived from the same formula
 Source df Alias In aefficiency xefficiency eefficiency order
 Columns 4 Rows plots 0.9870 1.0000 0.9500 2

50

 Aliasing refers to nonorthogonality between sources in the same tier (panel):
 i.e. both allocated or both recipient sources; e.g. Rows and Columns.

 Confounding refers to nonorthogonality between sources from different tiers
(panels):
 i.e. an allocated and a recipient source; e.g. Lines and Rows.

20 plots

4 Rows
5 Columns

5 lines

5 Lines 

Confounding versus aliasing
 Confounding and aliasing are about the relationships between sources.
 An allocated (recipient) source can be aliased or partially aliased with another

allocated (recipient) source.
 An aliased source is one that when the term for it is fitted, there is no information about its

source available.
 A partially aliased source only loses some of its information to sources for previously fitted

terms, e.g. Columns is partially aliased with Rows.
 Aliasing is to be avoided if possible, although sometimes it is purposefully employed (e.g. alias

potentially small three-factor treatment interactions with treatment main effects in fractional
factorial experiments).

 An allocated source can be confounded or partially confounded with a recipient
source.
 It is confounded with a recipient source when all information about it is associated with that

recipient source.
 If only part of the information is associated with the recipient source, then it is partially

confounded with the recipient source.
 Confounding or partial confounding is unavoidable in experiments.
 Confounding is preferred to partial confounding, if it is achievable (and provided there is a

Residual for the recipient source). 51

Confounding examples

 Confounding
> summary(RCBD.canon)
 Source.plots df1 Source.lines df2 aefficiency eefficiency order
 Rows 3
 Columns[Rows] 20 Lines 4 1.0000 1.0000 1
 Residual 16

 Partial Confounding
 Source.plots df1 Source.lines df2 aefficiency xefficiency eefficiency order
 Rows 3 Lines 1 0.0500 0.0500 0.0500 1
 Residual 2
 Columns 4 Lines 4 0.0444 0.1968 0.0189 3
 Rows#Columns 11 Lines 4 0.8948 0.9663 0.7681 3
 Residual 7

52

In an RCBD, Lines is confounded with
Columns[Rows], i.e. all information about Lines is
associated with the recipient source Columns[Rows].

In a YSD with a missing value, Lines is partially confounded
with Rows, Columns and Columns[Rows], i.e. some information
about Lines is associated with all recipient sources.

A missing treatment

 How does a missing treatment affect the properties of the design?
> #'## Set up a layout with a missing Line
> YSD.missA.lay <- YSD.lay
> YSD.missA.lay$Lines[YSD.missA.lay$Lines == "A"] <- NA

53

The anatomy for a missing treatment
> #'## Get the anatomy of the layout
> YSD.missA.canon <- designAnatomy(formulae = list(plots = ~ Rows*Columns,
+ lines = ~ Lines),
+ data = na.omit(YSD.missA.lay))
> summary(YSD.missA.canon, which.criteria = c("aeff", "xeff", "eeff", "order"))

Summary table of the decomposition for plots & lines (based on adjusted quantities)
 Source.plots df1 Source.lines df2 aefficiency xefficiency eefficiency order
 Rows 3
 Columns 4 Lines 3 0.0909 0.0909 0.0909 1
 Residual 1
 Rows#Columns 8 Lines 3 0.9091 0.9091 0.9091 1
 Residual 5

Table of (partial) aliasing between sources derived from the same formula
 Source df Alias In aefficiency xefficiency eefficiency order
 Columns 4 Rows plots 0.9362 1.0000 0.9167 2

The design is not orthogonal 54

What has been the
effect of the
missing treatment?

6. Systematic allocation and pseudoreplication

 It happens that randomization is not always desirable or possible.
 A grapevine experiment is to be run in two greenhouses:

 One greenhouse is to be kept at ambient temperature and the other is to be
cooled;

 Of the two greenhouses, one is naturally warmer than the other and so needs
to be the warm greenhouse.

 So randomization is not desirable.
 Within each greenhouse, two salinity treatments (control and saline)

are to be applied to 12 varieties.
 The combinations of Heat, Salinity and Varieties are to be replicated

6 times.

55

Grapevine design
 Within each greenhouse:

 There are 2 Sides (blue
rectangles), with 6 main units
per Side (pink and yellow lines
separates main units).

 A split-unit design is to be
used to assign
o Salinities to main units;
o Varieties to 12 pots (subunits)

in each main unit.
 Split-unit design because:

o Large differences between
Salinities;

o Variety differences are the most
important. 56

(Numbers are pots.)

Grapevine design

57

2 Heats

2 Salinities

12 Varieties

48 treatments

2 Greenhouses
2 Sides in G
3 BRows in G, S
2 BCols in G, S

12 Pots in G, S, Br, Bc

288 pots



 Anticipated model:
 Heat * Salinity * Varieties |

Ghouses + Ghouses:Sides +
Ghouses:Sides:BRows +
Ghouses:Sides:BCols +
Ghouses:Sides:Brows:BCols +
Ghouses:Sides:Brows:Bcols:Pots.

Main units
Subunits

To balance Salinity, a 3 ´ 2 extended Latin
square design, based on 2 ´ 2 Latin
squares is to be used in each Side.

Generating the
systematic design
in R

58

> split.sys <- cbind(fac.gen(list(GHouse = 2, Sides = c("N", "S"),
+ BRows = 3, BCols = 2, Pots = 12)),
+ fac.gen(list(Heat = c("Warm", "Cool"), 12, Varieties = 12)),
+ Salinity = factor(rep(c(designLatinSqrSys(2),1,2,
+ designLatinSqrSys(2, start = c(2,1)),2,1),
+ each = 12, times = 2),
+ labels = c("Control", "Na")))

Generate the recipient
factors indexing the pots.

Two Latin squares with
different starting rows.

Extra rows.

2 Heats

2 Salinities

12 Varieties

48 treatments

2 Greenhouses
2 Sides in G
3 BRows in G, S
2 BCols in G, S

12 Pots in G, S, BR, BC

288 pots



Generate Heat and
Varieties in standard
order; the 12 works
as if a factor with 12
levels occurs in this
position.

Salinity has to be
assigned using Extended
Latin Squares (ELS).

Pair of ELS designs
repeated twice, one for
each GHouse.

Systematic
grapevine design

59

 Numbers are
Varieties.

The except option allows the generation of a design,
in which Heat is systematically allocated, while Salinity
and Lines are randomized.

Randomizing the
grapevine design

> split.lay <- designRandomize(allocated = split.sys[c("Heat", "Salinity", "Varieties")],
+ recipient = split.sys[c("GHouse", "Sides",
+ "BRows", "BCols", "Pots")],
+ nested.recipients = list(Sides = "GHouse",
+ BRows = c("Sides", "GHouse"),
+ BCols = c("Sides", "GHouse"),
+ Pots = c("Sides", "GHouse",
+ "BRows", "BCols")),
+ except = "GHouse",
+ seed = 64131)

60

 Use designRandomize from dae
to randomize the systematic layout.
 The randomization is determined by

the nesting relationships between the
recipient factors.

2 Heats

2 Salinities

12 Varieties

48 treatments

2 Greenhouses
2 Sides in G
3 BRows in G, S
2 BCols in G, S

12 Pots in G, S, BR, BC

288 pots



The nested.recipients specifies the
nesting shown in the pots panel; factors
not nested are assumed to be crossed.

Grapevine design

 Warm has been
systematically assigned to
the first Greenhouse.

 Within a Side there are 2
columns (BCols) of main
units:
 One has 2 main units with

Control and the other 2 with
Na.

 A complete set of the 12
Varieties is randomized
within each main unit.

61

Properties of the grapevine design
> split.canon <- designAnatomy(formulae = list(tests = ~ GHouse/Sides/(BRows*BCols)/Pots,
+ cond = ~ Heat*Salinity*Varieties),
+ data = split.lay)
> summary(split.canon, which.criteria=c("aeff", "order"))
Summary table of the decomposition for tests & cond (based on adjusted quantities)

 Source.tests df1 Source.cond df2 aefficiency order
 GHouse 1 Heat 1 1.0000 1
 Sides[GHouse] 2
 BRows[GHouse:Sides] 8
 BCols[GHouse:Sides] 4 Salinity 1 0.1111 1
 Heat#Salinity 1 0.1111 1
 Residual 2
 BRows#BCols[GHouse:Sides] 8 Salinity 1 0.8889 1
 Heat#Salinity 1 0.8889 1
 Residual 6
 Pots[GHouse:Sides:BRows:BCols] 264 Varieties 11 1.0000 1
 Heat#Varieties 11 1.0000 1
 Salinity#Varieties 11 1.0000 1
 Heat#Salinity#Varieties 11 1.0000 1
 Residual 220
The design is not orthogonal

62

Matches the
nested.recipients

Heat is confounded
with GHouse, an
effect of the
pseudoreplication.

Salinity (&
Heat#Salinity) are
not orthogonal, but
most information is
confounded with
Brows#Bcols[GH:S].
(Design property)

All Varieties
effects are
orthogonal. But all orders are one and so it is balanced.

Prior allocation model for the grapevine design
Summary table of the decomposition for tests & cond (based on adjusted quantities)

 Source.tests df1 Source.cond df2 aefficiency order
 GHouse 1 Heat 1 1.0000 1
 Sides[Ghouse] 2
 BRows[GHouse:Sides] 8
 BCols[GHouse:Sides] 4 Salinity 1 0.1111 1
 Heat#Salinity 1 0.1111 1
 Residual 2
 BRows#BCols[GHouse:Sides] 8 Salinity 1 0.8889 1
 Heat#Salinity 1 0.8889 1
 Residual 6
 Pots[GHouse:Sides:BRows:BCols] 264 Varieties 11 1.0000 1
 Heat#Varieties 11 1.0000 1
 Salinity#Varieties 11 1.0000 1
 Heat#Salinity#Varieties 11 1.0000 1
 Residual 220
The design is not orthogonal

63

The confounding of
Heat and GHouse, is
exhaustive in that all
GHouse information is
mixed up with Heat
differences (there is no
Residual GHouse
Residual).

 To have a prior allocation model that will fit, one of GHouse and Heat must be removed.

That is Heat and
GHouse are
inextricably mixed up
together so that one
cannot say which part
of any difference
associated with either
factor is due one or
other of the factors.
It means that the initial
allocation model will
not fit.

Prior allocation model for the grapevine design

Summary table of the decomposition for tests & cond (based on adjusted quantities)

 Source.tests df1 Source.cond df2 aefficiency order
 GHouse:Sides 3 Heat 1 1.0000 1
 Residual 2
 BRows[GHouse:Sides] 8
 BCols[GHouse:Sides] 4 Salinity 1 0.1111 1
 Heat#Salinity 1 0.1111 1
 Residual 2
 BRows#BCols[GHouse:Sides] 8 Salinity 1 0.8889 1
 Heat#Salinity 1 0.8889 1
 Residual 6
 Pots[GHouse:Sides:BRows:BCols] 264 Varieties 11 1.0000 1
 Heat#Varieties 11 1.0000 1
 Salinity#Varieties 11 1.0000 1
 Heat#Salinity#Varieties 11 1.0000 1
 Residual 220

64

 GHouse is the obvious choice so that Heat and its interactions are retained.
 Heat * Salinity * Varieties | Ghouses + Ghouses:Sides + Ghouses:Sides:BRows

+ Ghouses:Sides:BCols + Ghouses:Sides:Brows:BCols +
Ghouses:Sides:Brows:Bcols:Pots.

This model is a ”model
of convenience”: it
gives a fit.
However, it does not
contain all the
pertinent sources of
variation in the
experiment.

This revised anatomy
shows that Sides
variability will be used
for judging overall
Heat differences; this
is very likely to be an
underestimate of the
variability affecting
Heat differences.

7. Summary of confounding and aliasing
 In comparative experiments,

 there is always some confounding; and
 there may be some aliasing.

 All allocation, be it systematic, haphazard, spatial or randomized,
results in confounding:
 designAnatomy does not distinguish between different types of allocation.
 Properly replicated treatments can be systematically allocated.

o The danger with systematic replication is that it will be confounded with any systematic
trends associated with the factors to which it is allocated.

 Pseudoreplication manifests as exhaustive confounding.
 Numeric covariates introduce partial aliasing (nonorthogonality

between allocated terms).
 Missing values introduce partial aliasing and confounding. 65

Practical session for Nonorthogonal experimental
design in R

1. Using dae and od to obtain randomized layouts for orthogonal
designs.

i. An alpha design
ii. A BIBD.
iii. A nonorthogonal row-column design for a Casuarina trial.
iv. A 25-line wheat experiment from Gilmour et al. (1995).
v. A small environmental experiment.

2. Again, you have only to follow the script that has been given.
3. There are some questions for you to answer about each design.

66

References
 Brien, C. J. (2017). Multiphase experiments in practice: A look back. Australian & New Zealand Journal of Statistics, 59,

327-352.
 Brien, C. J. (2019). dae: functions useful in the design and ANOVA of experiments. R package version 3.1-16. URL

http://cran.at.r-project.org/package=dae.
 Butler, D. G. (2019) od: generate optimal experimental designs. (R package version 2.0.0, to be made available)

https://mmade.org/.
 Butler, D. G., Cullis, B. R., Gilmour, A. R., Gogel, B. J., & Thompson, R. (2018). ASReml-R reference manual (Version 4).

Hemel Hempstead: VSN International Ltd.
 Cochran, W. G., & Cox, G. M. (1957). Experimental Designs (2nd ed.). New York: Wiley.
 De Mendiburu, F. (2018). agricolae: statistical procedures for agricultural research. R package version 1.3-1. URL

http://cran.at.r-project.org/package=agricolae.
 Gilmour, A. R., Thompson, R., & Cullis, B. R. (1995). Average Information REML: An Efficient Algorithm for Variance

Parameter Estimation in Linear Mixed Models. Biometrics, 51, 1440-1450.
 Kiefer, J. (1959). Optimum Experimental Designs. Journal of the Royal Statistical Society, Series B (Methodological), 21,

272-319.
 Hinkelmann, K., & Kempthorne, O. (2005). Design and analysis of experiments Vol. 2 Advanced experimental design.

Hoboken, N.J.: Wiley-Interscience.
 Patterson, H. D., & Bailey, R. A. (1978). Design keys for factorial experiments. Journal of the Royal Statistical Society,

Series C (Applied Statistics), 27, 335-343.

67

https://mmade.org/

	Designing comparative experiments using R�(Chris Brien and Sam Rogers)
	Outline
	Recall the paradigm for designing experiments �(Brien, 2017)
	1.	Designing nonorthogonal experiments
	Design optimality
	2.	Using the concepts for balanced designs
	2(a)	Row and Column differences likely in 4 x 5 grid
	YSD.lay
	The initial allocation-based mixed model
	Working out the confounding
	Check properties using designAnatomy
	The design’s properties
	To combine or not combine information?
	What if you don’t know what design to use here?
	Using od to obtain an optimal design
	Using od to obtain an optimal 4 x 5 grid design
	The od design
	The anatomy of the od design
	Can choose the wrong starting design
	Optimal systematic design in, optimal systematic design out
	Some points to remember in using od
	3.	 Using the concepts for unbalanced designs
	PBIBD randomized layout
	PBIBD properties
	PBIBD with unique Units levels
	Using od to get an A-optimal design
	PBIBD od randomization
	PBIBD od design properties
	3(b)	A wheat experiment (Gilmour et al., 1995)
	The wheat experiment — models
	The wheat experiment – models (revised)
	The wheat experiment - properties
	A-optimality of the design
	3(c) 	A Plant Accelerator (PA) design
	The anticipated model
	Check properties of the PA design
	Linear trend across MainPositions
	Using od to get a design �— initial main-unit design
	Recall the anticipated �model
	Using od to set variance parameters for the main-unit design
	Using od to get a near-A-optimal main-unit design
	How does the mixed-model design compare with a fixed-model design for the mixed model?
	Expand the main-unit design to a split-unit design
	4. 	Summary of constructing nonorthogonal designs
	Degrees of balance
	Identifying an optimal design
	5.	What happens when there is missing data?
	The anatomy for a missing value
	The anatomy for a missing value
	Confounding versus aliasing
	Confounding versus aliasing
	Confounding examples
	A missing treatment
	The anatomy for a missing treatment
	6.	Systematic allocation and pseudoreplication
	Grapevine design
	Grapevine design
	Generating the systematic design in R
	Systematic grapevine design
	Randomizing the grapevine design
	Grapevine design
	Properties of the grapevine design
	Prior allocation model for the grapevine design
	Prior allocation model for the grapevine design
	7. 	Summary of confounding and aliasing
	Practical session for Nonorthogonal experimental design in R
	References

