Designing comparative

experiments using R

(Chris Brien and Sam Rogers)

ll. Nonorthogonal experimental design
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Recall the paradigm for designing experiments
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1. Designing nonorthogonal experiments

m For nonorthogonal experiments, getting the initial systematic design
IS generally more difficult than for orthogonal experiments.

Cannot just deploy a standard known design,;
Will demonstrate a number of approaches.
m Our dae friends, designRandomize and designAnatomy, play the
same role as for orthogonal experiments.
(desi1gnRandomize is not used for spatial designs.)
m How do we know that the design that we have is good?

Design optimality is the answer.
There is A-, D-, C-, E-, G-, M- and S-optimality. Which one?



Design optimality

m For comparative experiments, A-optimality is the favoured optimality criterion.

The definition of A-optimality is that it minimizes the total variance of the predictions or
Prediction Error Variance (PEV) (Kiefer, 1959)

The PEV Is the same as the average variance of pairwise differences (AVPD):
o when terms to be optimized (e.g. Treatments) are fixed,
o not when the terms to be optimized are random.
o when the residual model is not iid i.e. correlated residuals are OK.

m Often suggested that minimum AVPD is the criterion of choice for comparative
experiments.
So they will be A-optimal if the terms to be optimized are fixed;

But what if the terms to be optimized are random?
o Is AVPD appropriate for random factors?
o Given the effects are random, conducting inference on a pair of differences is not meaningful.
o S0 PEV seems a reasonable measure, but it is not the same as AVPD; nonetheless AVPD is used.

m As previously mentioned, often fixed-model A-optimal designs are sought for
comparative experiments:
All model terms are assume fixed, except the residuals.



2. Using the concepts for balanced designs

m Suppose have 20 plots arranged in a grid of 4 rows x 5 columns.
m \We want to assign 5 lines to the 20 plots.

m Again, what design to use?
Completely Randomized CRD,
Randomized Complete or Incomplete Block (RCBD or IBD), or
Youden Square Design (YSD) (an LSD is impossible)?

m Already know that, irrespective of the design:
the unit factors are Rows, Columns and the treatment factor is Lines.

m Suppose that Row and Column differences are probable.
m What is the anticipated model?

Lines + Rows + Columns | Rows:Columns — same as for an LSD



2(a) Row and Column differences likely in 4 x 5 grid

m Need a design that allows for Row and Column main effects.
m Are Rows and Columns crossed or nested? Why?
o Crossed because expect consistent differences between Rows and between Columns.

m YSD is a design that is optimal for this model:
Construct by taking a Latin square and omitting a row.
m Use of designRandomize (and designLatinSqrSys) to get a design:

b <- 4

t <-5

> #"## Construct a systematic layout and obtain the randomized layout

> YSD.sys <- cbind(fac.gen(list(Rows=b, Columns=t)),

+ Lines = factor(designLatinSqrSys(t)[1:(b*t)], labels = LETTERS[1:t]))
> YSD.lay <- designRandomize(allocated = YSD.sys|["Lines'"],

- recipient = YSD.sys[c("Rows", "Columns')],

+ seed = 95332)

> # ## Output the layout T Generate Latin square,
> YSD. lay

but take only first 20 of

of data. frames. columns). /
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The initial allocation-based mixed model

m The factor allocation diagram Is:

: 4 RoOwsS
[ o Lines ] : %5Columns }

5 lines

20 plots

m From the factor allocation diagram, the initial allocation model is:

Lines | Rows + Columns + Rows:Columns

This model and the anticipated model are different — here Rows and Columns
are random.

The Rows and Columns terms could be moved to the fixed model to form a
homogeneous allocation model,

o which in turn may become the prior allocation model.



Working out the confounding 5“”63%53%& }
°lnes Plot of Lines 20 pIOtS
m \What are the recipient (unit) sources? Hc|loplalBe|E
Rows, Columns & Rows#Columns 2alsfn]e]c
m Lines will be confounded with which *Selalc|o]e
recipient (unit) sources? fole|lB|c]|a
1 2 3 4 5

With Columns & Rows#Columns (cf. LSD).

m Can determine this by investigating the relationships between two
sets of projectors, those for lines and those for plots:
one source projector for each term in the initial allocation model,
{Q.} and {Pg, P¢, Prauc}
m Require the eigenvalues of PQ, P for all 3 Ps.

m They are calculated and statistical summaries of them are tabulated
by designAnatomy. 10

Columns



Check properties using designAnatomy

> YSD.canon <- designAnatomy(formulae = list(plots = ~ Rows*Columns,
+ lines = ~ Lines),

+ data = YSD. lay)

> summary(YSD.canon)

Summary table of the decomposition for plots & lines (based on adjusted
quantities)

Source.plots dfl Source.lines df2 aefficiency eefficiency order
Rows 3

Columns 4 Lines 4 0.0625 0.0625 1
Rows#Columns 12 Lines 4 0.9375 0.9375 1
Residual 8

For the first time,

» Lines occurs twice in an analysis;
but the order is one and » neither the aefficiency nor the eefficiency are 1;
so the design is balanced » Lines is partially confounded with two sources.

11

The design 1s not orthogonal



The design’s properties

S
q

T

ummary table of the decomposition for plots & lines (based on adjusted
uantities)

Source.plots dfl Source.lines df2 aefficiency eefficiency order
Rows 3

Columns 4 Lines 4 0.0625 0.0625 1
Rows#Columns 12 Lines 4 0.9375 0.9375 1
Residual 8
he design is not orthogonal B Thus there are 4 nonzero eigenvalues for P-Q, P and
for PrcQ_Pre:
All 4 df for Lines are confounded » For PcQ, P, all are 0.0625 (1/16);
with both Columns and » For Pr:Q,Pge, all are 0.9375 (15/16);
Rows#Columns; » Being 1st-order balanced, the efficiencies sum to 1.
None are confounded with Rows. B 15/16 of the information for Lines is confounded with
Rows#Columns.

» Generally, prefer the intrablock or intrarow-
intracolumn efficiency to be greater than, say, 0.75.

12



To combine or not combine iInformation?

m Lines, being confounded with Columns and with Rows#Columns,

there are available two estimates of the Lines effects:
It is expected that those estimated from Columns differences would have
greater variability than those estimated from Rows#Columns. Why?

m Should these two sets of estimates be combined?

In this case, not a lot would be lost by relying on the intrarow-intracolumn
estimates: actually, only 1/16 of the information.

The advantage is that the more variable inter-column estimates do not
contaminate the less variable intrarow-intracolumn estimates.

m In the context of mixed modelling,

The combined estimates are produced when Columns is random.

The intrarow-intracolumn estimates are produced when Columns is fixed.
That Is, in deciding whether Columns is fixed or random, consider whether
Intrablock or combined estimates of Lines are required.

13



What if you don’t know what design to use here?

m Look up Cochran and Cox (1957) [C&C] — but they are called incomplete Latin
squares, or use agicolae (De Mendiburu, 2019).

However, you have to know what you the design that you need.

m Use computer searching: CycDesigN, SAS or od.

Both the standalone software CycDesigN and the R package od (Butler, 2019) search for a

design that minimizes the average variance of pairwise differences (AVPD).
o CycDesigN searches for fixed-model A-optimal designs;
o 0d searches for mixed-model A-optimal designs;

Provided the terms being optimized (treatments) are fixed, these designs are A-optimal
because the AVPD equals the PEV.

o Otherwise, they may not be A-optimal.
The harmonic mean of the efficiency factors, the A-efficiency, is proportional to the PEV when
the only random term is the residual (or identity) term.

SAS searches for a D-optimal design.
o Minimizes the volume of the confidence ellipsoid of estimates (not necessarily A-optimal).
o The product of the reciprocals of the efficiency factors is minimized.

o D-optimal designs are used when response curve parameters are to be estimated. 14



Using od to obtain an optimal design

m The od function has the following arguments:
fixed, random and residual are formulae for specifying the mixed model.
permute is a formula with a single term that is to be optimized by swapping
values for the term between rows of its design matrix.
swap is a formula for specifying a term for restricting the permutes to be within
its levels.

search specifying a search strategy: random, tabu (records rejected
designs), randomwalk (as for random, but accepts a non-improving design
with proablility P) and tabu+rw (combined).

max 1t gives the number of tabu loops or random interchanges.
start.values allows one to specify the values of variance parameters,
without beginning a search.

data is a data.frame containing an initial design (obligatory as used to resolve
terms in formulae). 15



Using od to obtain an optimal 4 x 5 grid design

> #"### Initialize with a randomized RCBD layout

> R4C5.1n1 <- cbind(fac.gen(list(Rows=b, Columns=t)),

+ Lines = factor(rep(l:t, times = b), labels = LETTERS[1:t]))
> R4C5.1n1 <- designRandomize(allocated = R4C5.1ni["Lines"],

+ recipient = RAC5.1ni[c('Rows"™, "Columns')],
+ nested.recipients = list(Columns = "Rows"),

+ seed = 7851)

> # "### Get the od design

> R4C5.0d <- od(fixed = ~ Rows + Columns + Lines,

+ permute = ~ Lines,

+ search = "tabu', maxit = 25,

+ data = R4C5.1ni1)

Done set up; elapsed = 0.00

Initial A-value = 0.952475 (5 A-equations; rank C 4)

A-value after tabu loop 1 is 0.569492 > R4C5.lay <- R4C5.od$design
A-value after tabu loop 2 is 0.558333 > # "### Independently calculate the A-measure
A-value after tabu loop 3 is 0.533333 > (designAmeasures(mat.Vpredicts(target = ~ Lines -1,
) + fixed = ~ Rows + Columns,
-t _ desi = R4C5.1
A-value after tabu loop 25 i1s 0.533333 : T estan a¥)))
Hash table size 30 211 0.5333333
Final A-value after 25 tabu iterations: 0.533333
Done optimise; elapsed =  0.02 B The AVPD for the row-column design (0.53)

Is almost half that for the RCBD (0.95). 1s



The od design

> #"### Randomize design according to the plots structure
> R4C5.lay <- designRandomize(allocated

+
+

recipient
seed

R4C5. lay["'Lines"],
RAC5. lay[c('Rows™, "‘Columns™)],
65460)

» This randomization ensures a valid randomization.
o Thatis, a randomization that is randomly selected from all possible randomizations.

> # "### Calculate the A-measure of the randomized design
> (designAmeasures(mat.Vpredicts(target

+ o+

all
all 0.5333333

» No change in the AVPD.

fixed
design

~ Lines -1,
~ Rows + Columns,
R4C5.1ay)))

17



The anatomy of the od design

> # "### Check properties of the od layout

> R4C5.canon <- designAnatomy(formulae = list(plots = ~ Rows*Columns,
+ lines = ~ Lines),

+ data = R4C5.1ay)

> summary(R4C5.canon)

Summary table of the decomposition for plots & lines (based on adjusted quantities)

Source.plots
Rows

Columns
Rows#Columns

The design 1s

dfl Source.lines df2 aefficiency eefficiency order

3

4 Lines

12 Lines
Residual

not orthogonal

4 0.0625 0.0625
4 0.9375 0.9375
8

B Same as the Youden square anatomy.

Each treatment occurs in 4 out of 5
columns and so the design is a YSD.

1
1

Plot of Lines




Can choose the wrong starting design

> #"## Try a starting design in which row-column randomization is used on a systematic design

> R4C5.1n1 <- designRandomize(allocated = data.frame(Lines =
+ factor(rep(l:t, times = b),
+ labels = LETTERS[1:t])),
+ recipient = list(Rows=b, Columns=t) .
Plot of Lines
+ seed = 95332)
1- E

g2- E

o]

"3 E
> # "### Get the od design 4 E
> R4C5.0d <- od(fixed = ~ Rows + Columns + Lines, , > 3 y 5
+ permute = ~ Lines, Columns
+ search = "tabu", maxit = 25, M Atleast some DF for the fixed permute term
+ data = R4C5.ini) are confounded with other fixed terms:
Done set up; elapsed = 0.00 » All DF Lines with Columns here;
Error in od(fixed = ~Rows + Columns + Lines, B Solution:
permute = ~Lines, search = "tabu", : » Choose a connected design (full Lines df at

Disconnected design of order 4 least partially confounded with Rows#Columns.
19

» Or, use a mixed model (not here).



Optimal systematic design in, optimal systematic

design out

YSD.sys <- cbind(fac.gen(list(Rows=b, Columns=t)),

Lines = factor(designLatinSqrSys(t)[1:(b*t)], labels = LETTERS[1:t]))

R4C5.sys.od <- od(fixed ~ Rows + Columns + Lines,

permute = ~ Lines,
search = "tabu", maxit = 25,
data = YSD.sys)

plotR4C5(R4C5.sys.od$design)

Take home message:
od produces an optimal design,

not a randomized design.

Plot of Lines

Columns

20



Some points to remember In using od

m The treatment terms cannot be confounded with fixed unit terms:
e.g. Lines confounded with Columns.

m 0d does not necessarily produce a properly randomized design:

That Is, one randomly selected from all possible randomizations;
Supply a systematic optimal design: od will return it unmodified,;

Can use designRandomize after od when independent errors are assumed,
otherwise before od.

m The computed A-value (AVPD) can be checked, or the value under

an alternative model calculated, with

designAmeasures(mat.Vpredicts(..)).
mat.Vpredicts calculates the predictions variance matrix and
designAmeasures calculates the AVPD from the matrix.

m Some designs are optimal under both fixed and random units terms:
orthogonal, balanced (incomplete-) block, (most generalized) Youden square
and the lattice square designs are A-optimal under fixed and mixed models. 21



3. Using the concepts for unbalanced designs

3(a) A partially balanced incomplete-block design (PBIBD) from
C&C (p.379)

m This design Is suitable for a situation in which:
the number of treatments is 6,
each treatment is to be replicated 4 times,
the anticipated model is Treatments | Blocks + Blocks:Units, and
the number of units per block restricted to 4.

Blocks
Units I [l [l Y V Vi
6 Blocks
[ 6 Treatments ﬂ—KE 4 Units in B } 1 1 2 3 4 5 6
2 4 5 6 1 2 3
6 treatments 24 units 3 2 3 1 5 6 4
4 5 6 4 2 3 1

22



PBIBD randomized layout

> #"## Input the systematic design

> b <- 6

> k <- 4

>t <- 6

> PBIBD2.sys <- cbind(fac.gen(list(Blocks = b, Units = k)),

+ Treatments = factor(c(1,4,2,5,

+ 2,5,3,6,

+ 3,6,1,4,

+ 4,1,5,2,

+ 5,2,6,3,

+ 6,3,4,1)))

> #"## Randomize the systematic design

> PBIBD2.lay <- designRandomize(allocated = PBIBD2.sys["Treatments'],
+ recipient = PBIBD2.sys[c('Blocks", "Units')],
+ nested.recipients = list(Units = "Blocks"),

+

seed = 98177)



PBIBD properties

>H#"## Compute the anatomy

> PBIBD2.canon <- designAnatomy(formulae = list(unit = ~ Blocks/Units,

+ trt = ~ Treatments),

+ data = PBIBD2. lay)

> summary(PBIBD2.canon, which.criteria = c("aeff", "xeff", "eeff","order®, "dforth"))

Summary table of the decomposition for unit & trt (based on adjusted quantities)

Source.unit dfl Source.trt df2 aefficiency xefficiency eefficiency order dforthog

Blocks 5 Treatments 2 0.2500 0.2500 0.2500 1 0
Residual 3
Units[Blocks] 18 Treatments 5 0.8824 1.0000 0.7500 2 3

Residual 13

The design is not orthogonal
m \What are the eigenvalues for Pg,Q,Pg,?

Three are one and two are 0.75 for a harmonic mean of 0.8824.
m That 88% of Lines information confounded with Units[Blocks] is good.



PBIBD with unique Units levels

> PBIBD2.lay$AUnits <- with(PBIBD2.lay, fac.combine(list(Blocks,Units))) AUnits = All Units
> levels(PBIBD2. lay$AUNits)
[} 1+ "2 3" 4 U5t Uet Y™ otg't ot 10T i1t ra2tt i3t gt 'tist ttiet iyt 'ri8™
[19] ™'19™ ™20' 21" ™22 23" 24"
> #"### Blocks + AUnits
> PBIBD2U.canon <- designAnatomy(formulae = list(unit = ~ Blocks + AUnits,
+ trt = ~ Treatments),
+ data = PBIBD2. lay)
> summary(PBIBD2U.canon, which.criteria = c("aeff", "xeff", "eeff","order”, "dforth®))

Summary table of the decomposition for unit & trt (based on adjusted gquantities)

Source.unit dfl Source.trt df2 aefficiency xefficiency eefficiency order dforthog

Blocks 5 Treatments 2 0.2500 0.2500 0.2500 1 0
Residual 3

AUnits[Blocks] 18 Treatments 5 0.8824 1.0000 0.7500 2 3

Residual 13
The design i1s not orthogonal
> # ### Blocks/AUnits

> PBIBD2U.canon <- designAnatomy(formulae = list(unit = ~ Blocks/AUnits,
_ Produces exactly the
+ trt = ~ Treatments),

+ data PBIBD2. lay) same anatomy. 25



Using od to get an A-optimal design

> #"### Initialize with a randomized layout

> PBIBD.in1 <- cbind(fac.gen(list(Blocks=b, Units=k)),

+ Treatments = factor(rep(l:t, times = b*k/t), labels = LETTERS[1:t]))

> PBIBD.i1n1 <- designRandomize(allocated = PBIBD.ini["Treatments'],

+ recipient = PBIBD.ini[c('Blocks"™, "Units")],

+ nested.recipients = list(Units = "Blocks"),

+ seed = 4794)

> #"### Get the od design > (designAmeasures(

> PBIBD.od <- od(fixed = ~ Blocks + Treatments, . mat.Vpredicts(target = ~ Treatments -1,
+ permute = ~ Treatments, + fixed = ~ Blocks,

+ search = "tabu', maxit = 25, + design = PBIBD2.lay)))
+ data = PBIBD.iInt) all

Done set up; elapsed = 0.00 all 0.5666667

Initial A-value = 0.566667 (6 A-equations; rank C 5)

A-value after tabu loop 1 1s 0.559487

A-value after tabu loop 2 1s 0.559487

A-value after tabu loop 3 is 0.559487 AVPD for C&C design.

Final A-value after 25 tabu i1terations: 0.559487

Done optimise; elapsed = 0.02 26



PBIBD od randomization

> PBIBD.lay <- PBIBD.od$design
> #"## Randomize the od design
> PBIBD.lay <- designRandomize(allocated

+ recipient
+ nested.recipients
+ seed

PBIBD. lay['"Treatments'],

PBIBD. lay[c(''Blocks", "Units")],
list(Units = "Blocks"),

13332)

27



PBIBD od design properties

> #"### Check properties of the od layout

> PBIBD.canon <- designAnatomy(formulae = list(plots = ~ Blocks/Units,

+ trts = ~ Treatments),

+ data = PBIBD. lay)

> summary(PBIBD.canon, which.criteria = c("aeff", “"xeff", "eeff","order®, "dforth"))

Summary table of the decomposition for plots & trts (based on adjusted quantities)

Source.plots dfl Source.trts df2 aefficiency xefficiency eefficiency order dforthog

Blocks 5 Treatments 4 0.0937 0.1875 0.0625 2 0
Residual 1

Units[Blocks] 18 Treatments 5 0.8937 1.0000 0.8125 3 1
Residual 13

This shows that, in contrast to a
BIBD, a PBIBD of order 2 is not
necessarily A-optimal.

. , . Which one to use?
m The od design is (nearer) A-optimal, with > The PBIBD2 will have only 2

a higher A-efficiency than the PBIBD2 (0.8937 versus 0.8824), SEM values and so 3 SEDs.
three rather than two different efficiency factors, > The od design would have 6

. : SEDs, but they would cover a
the range of the efficiency value is less

_ narrower range.
(min of 0.75 versus 0.8125). More than A-value to consider. 28

The design 1s not orthogonal



3(b) A wheat experiment (Gilmour et al., 1995)

m |nvestigates 25 varieties of wheat.

m A balanced lattice square on a 10 x 15 grid from C&C.

m Six reps, each 5 rows x 5 columns ooy sconmmsz  Scotummed

m [tis an example in the asreml manual,  *|*]2]#]3]5|['8|232 6 |15|[18/25] 8 1) 2
and the asremlPlus manual and 0 A 6 | Sl A A
the Wheat V|gnette 312122124123 (25||11(20|124| 3 | 7 || 6 |13|22| 4 |20 %

4111(12|14(13|15||22| 1 (10|14 (18||24| 1 (15|17 | 8

vignhette(package = "asremlPlus”).

5116 (17 (19(18|20|| 5 [ 9 [13(17(21||12|19| 3 |10 |21

[72)
: : 0
-— Q
u FaCtor allocatlon dlagram “ 113 (18| 8 [13|23|[16]24[10|13| 2 [|10| 4 |17]11|23
/ \ 211 (16| 6 |11 |21 1220192312624185“J
2  SuperRows 2
315/20|10(15|25|| 4 | 7 |[18|21(15(|19|13 (1 |25| 7 (=
3 SuperColumns a
- .- — I 412 (17| 7 [12|22]|125| 3 (14|17 6 ||21|20| 8 | 2 |14
[ 25 Varieties }_’O< 5 Rowsin S.r, Sc
~ 5 Columnsin Sr, Sc 514 (19| 9 |14(24|[ 8 |11]22| 5 (19| 3 [22(15| 9 |16
o - / 1 2 3 45 1 2 3 4 5 1 2 3 4 5
25 varleties 150 plots Columns

o . NN
Sr = SuperRows, Sc = SuperColumns How is this design to be randomized? ,q



The wheat experiment — models

allocated recipient R R Y ARG o e
- D -, ® Allocated = fixed;
2 SuperRows Recipient = random.
3 SuperColumns : :
[ - ] Nt b = Take all combinations of the
25 Varieties h . :
~ 5 Columnsin Sr, Sc factors within a panel, subject to
- . " the restriction that a nested factor
25 varleties 150 plots

. , cannot occur without its nesting
m Initial allocation model: factor.

- «~— Arandomization model
Varieties | SRows + SColumns + SRows:SColumns +
SRows:SColumns:Rows + SRows:SColumns:Columns +

SRows:SColumns:Rows:Columns. +—__ Aniidentity (or residual) term

_ _ _ _ — it uniquely indexes the units.
m The balanced lattice square is A-optimal for this model.

m No term for differences between whole rows and whole columns, because
not randomized by them.

o If had, then structure (SRows/Rows) * (SColumns/Columns), not (SRows*SColumns) / (Rows*Columns). 30




The wheat experiment — models (revised)

allocated recipient
4 )
2  SuperRows
3 SuperColumns
. 5 Rowsin Sr, Sc
[ 25 Varieties }_’Q<\5 Columns in Sr, Sc
- /

25 varieties 150 plots

m [nitial allocation model:
Varieties | SRows*SColumns + SRows:SColumns:Rows + SRows:SColumns:Columns
+ SRows:SColumns:Rows:Columns.

m Homogeneous allocation model:
Might make SRows*SColumns fixed.

nugget variance spatial residual

m Prior allocation model: orrelation
Varieties | SRows*SColumns + SRows: umns:Rows + (‘/
SRows:SColumns:Columns + units + arl(SRows:Rows):ar1(SColumns:Columns).

m The prior allocation model is not a randomization model, but a randomization-
based model. a




Based on initial or homogeneous
allocation model, with

The wheat experiment - propertieS srowsscolumns combined.

> Wheat.canon <- designAnatomy(formulae = list(units = ~ (SRows:SColumns)/(Rows*Columns),
+ trt = ~ Variety),

+ data = Wheat.dat)

> summary(Wheat.canon, which.criteria = c("aeff", "order™))

Summary table of the decomposition for units & trt (based on adjusted quantities)

Source.units dfl Source.trt df2 aefficiency order
SRows:SColumns 5 However, Gilmour et al.
Rows[SRows:SColumnsi] 24 Variety 24 0.1667 1 (1995) and Butler et al.
Columns[SRows:SColumns] 24 Variety 24 0.1667 :
Rows#Columns[SRows:SColumns] 96 Variety 24 0.6667 1 (2018) have ignored
Residual 72 SRows:SColumns (Reps).
The design is not orthogonal What happens?
> Wheat.RC.canon <- designAnatomy(formulae = list(units = ~ ARows*AColumns,
+ trt = ~ Variety),
+ data = Wheat.dat) ARow = SRows:Rows; (A = All)
> summary(Wheat.RC.canon) AColumn = SColumns:Columns.

Summary table of the decomposition for units & trt (based on adjusted quantities)
Source.units dfl Source.trt df2 aefficiency eefficiency order NoOtrandomization-based:

ARows 9 Variety 8 0.1667 0.1667 1 » Pushes down the 53 DF of the
Residual 1 first 3 sources from the lattice:

AColumns 14 Variety 12 0.1667 0.1667 1 o Into all units sources;
Residual 2 o some in ARow#ACol Residual.

ARows#AColumns 126| Variety 24 0.8452 0.6732 18 » More Variety information

Residual 102 confounded with Row#Col, but32



A-optimality of the design

The resolved design has the advantage that SRows*Scolumns (Replicate)
differences do not contribute to the variability of the Varieties.

It is the A-optimal resolved design.
It is not the A-optimal row-column design, i.e. under the model.
ARows + AColumns + Varieties | Rows:Columns.

Nor is it A-optimal for the prior allocation model with :

Varieties | SRows*SColumns + SRows:SColumns:Rows + SRows:SColumns:Columns + units
+ arl(SRows:Rows):arl(SColumns:Columns).

For these alternative models, use od to search for (near) A-optimal designs.

33



3(c) A Plant Accelerator

24

(PA) design -

21

m Split-unit design from od. 2
m /5 lines assigned to 18
main units (2 carts) using N

a blocked, row-column y
design: g 13

6 blocks of 4 Lanes; S:f

21 NAM lines (blue) on 10

4 main units each; X

52 NAM lines (grey) on 7

3 main units each; :
Scout & Gladius (green) 4

on 12 main units each. .

m 2 Conditions randomized 1

to pairs of carts (not shown).
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The anticipated model -

23

Zones-MainPositions cell 21

20

m Zones + Lines + Conditions + 19
. . . 18
Lines:Conditions | 17,
MainPositions + 161
. . . 151
Zones:MainPositions + 14
Zones:MainPositions:Rows + 8 13-
; .. 812
Zones:MainPositions:Rows:Carts. ~,,|

10+

w0

» Zones are the blocks of 4 Lanes;

» MainPositions are the columns of
pairs of carts;

» Rows are the 4 lanes within a Zone;

» Zones:MainPositions:Rows are the
main units.

» Carts are the pairs of Carts within a
Zones:MainPositions:Rows
combination; they are the sub-units.

Layout of Lines for optimized design
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Check properties of the PA design

> PA.canon <- designAnatomy(formullae = list(carts = ~ (Zones*MainPositions)/Rows/Carts,
+ trts = ~ Lines * Conditions),
+ data = PA.lay)

> summary(PA.canon, which=c("aeff", "eeff'", "order"™, "dfor'))

Summary table of the decomposition for carts & trts (based on adjusted quantities)

Source.carts dfl Source.trts df2 aefficiency eefficiency order dforthog

Zones 5 Lines 5 0.1497 0.1254 5 0

MainPositions 10 Lines 10 0.2101 0.1724 10 0

Zones#MainPositions 50 Lines 50 0.1209 0.0193 50 0

Rows[Zones:MainPositions] 198 Lines 74 0.6764 0.2746 66 9
Residual 124

Carts[Zones:MainPositions:Rows] 264 Conditions 1 1.0000 1.0000 1 1
Lines#Conditions 74 1.0000 1.0000 1 74
Residual 189

The design 1s not orthogonal
> The information about Lines confounded with Rows[Zones:MainPositions] is low.
o However, all 74 df for Lines confounded with it and so Lines is connected.

> Itis anticipated that the differences between MainPositions can be described in terms of a
linear trend across MainPositions and that Zones:MainPositions can be ignored.

o Could optimize for linear trend by replacing MainPositions with a centred numeric covariate, say xMaitnPosn.

o This tends to push extra replicates to the first and last MainPositions, which is not optimal for curved trends.
o So optimize for factor MainPositions and check properties for numeric covariate xMainPosn.
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Linear trend across MarnPositions

PA_.xMainPosn.canon <- designAnatomy(list(cart=~ Zones/MainUpts/Carts,
treat=~ xMainPos

data

vV + + V

= PA.lay)

Replace 11 MainPositions
with 44 MainUnits and
include a covariate.

+ Lines * Conditions),

summary(PA.xMainPosn.canon, which=c("aeff", "eeff", "order'", "dfor'))

Summary table of the decomposition for cart & treat (based on adjusted quantities)

Source.cart dfl Source.treat df2 aefficiency eefficiency order dforthog

Zones 5 Lines ) 0.1500 0.1255 ) 0

Mainunits[Zones] 258 xMainPosn 1 1.0000 1.0000 1 1
Lines 74 0.9879 0.8217 6 69
Residual 183

Carts[Zones:Mainunits] 264 Conditions 1 1.0000 1.0000 1 1
Lines#Conditions 74 1.0000 1.0000 1 74
Residual 189

Table of (partial) aliasing between sources derived from the same formula

Source df Alias In aefficiency eefficiency order dforthog
Lines 74 xMainPosn treat 0.9960 0.7687 2 73
Lines#Conditions 149 xMainPosn treat 0.9980 0.7687 2 148

The design 1s not orthogonal

Clearly, Lines is not
orthogonal to a linear trend
in XxMainPosn. The
aliasing is moderate (23%
of one Lines df is lost).

More importantly the majority of the rest of the information about Lines,

Is available from Rows[Zones:MainPositions] (main units);
(at least 82%; on average 98.8%).
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Systematic main-unit layout of Lines

Using od to get a design RN AR

— Initial main-unit design R D

Zones-MaitnPositions cell e i R S

m Aim to balance between 6 Zones the numbers of efelnfnlnlelalolalalw

RILs (1:21) replicated 4 times (blue), PO o T N B

Parents (74:75) replicated 12 times (green), T e T e o o oo e T

RILs (22:73) replicated 3 times (grey). Y 5 0 e T T Y

b <- 6 et e twlwlwlowlwlwls

r <-4 I N T T T I

c <- 11 N I I B N R R

maxit <-25 G . . I L L . N L

search <- "tabu“ B e e T B
main.sys <- cbind(fac.gen(list(Zones = b, Rows = r, MainPositions = cC)),
Lines = factor(c(1:14, 74:75, 74:75, 22:47, #Z1

The balancing is not

15:21, 1:7, 74:75, 74:75, 48:73, #Z2 essential, but an attempt
8:21, 74:75, 74:75, 22:47, #73

1:14, 74:75, 74:75, 48:73, 474 to ensure that a balanced
15:21, 1:7, 74:75, 74:75, 22:47, #Z5 design is considered.
8:21, 74:75, 74:75, 48:73))) 476

#"### Randomize systematic design

main.sys <- designRandomize(allocated = main.sys["Lines"],
recipient = main.sys[c(''Zones", "Rows", 'MainPositions')],
nested.recipients = list(Rows = c(''Zones', "MainPositions™)),
seed = 71598)

+ + + VV + 4+ + 4+ + 4+ V V V V VYV



Recall the anticipated
model

Zones-
MainPositions cell

m Zones + Lines + Conditions +
Lines:Conditions |
MainPositions + Zones:MainPositions +
Zones:MainPositions:Rows +
Zones:MainPositions:Rows:Carts.

m Several random terms.
By default od assumes that the variance
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component for Zones:MainPositions:Rows:Carts is one and the rest are 0.1 times it.

o Thatis, other than the residual, the components are small.
o Suppose this is OK, except that MainPositions is likely to be 0.5.
o Zones fixed is equivalent to assuming that the variance component is infinite.

3

2
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Using od to set variance parameters for the main-
unit design

#"### Set variance parameters

main.ini <- od(fixed = ~ Zones + Lines,
random = ~ MainPositions + Zones:(Rows + MainPositions),
permute = ~ Lines,

start.values = TRUE,
data = maln.sys) "L~.._----~§_. | | |
vp.table <- main.ini$vparameters.table <¢— With this argument, returns an object

vp.table$value[1] <- 0.5 that includes a variance parameter table.

(vp-table)
Component Value

MainPositions 0.5
Zones:Rows 0.1 : - :
0.1 \ MainPositions will be set

Zones:MainPositions .
_ to 0.5, as desired.
unitts!IR 1.0

v V.V + + + + V V

A WDN P



Using od to get a near-A-optimal main-unit design

> # ### Optimize

> main.od <- od(fixed = ~ Zones + Lines,

+ random = ~ MainPositions + Zones:(Rows + MainPositions),

+ permute = ~ Lines,

+ maxit = maxit, search = search,

+ G.param = vp.table,

N ~Tata = A Sys) \ Need to supply the variance parameter

Done set up; elapsed = 0.00 table to the G.param argument.

Initial A-value = 1.035331 (75 A-equations; rank C 74)
A-value after tabu loop 1 1s 0.707094
A-value after tabu loop 2 1s 0.706797
A-value after tabu loop 3 1s 0.706732

A-value after tabu loop 25 i1s 0.706413

Hash table size 678

Final A-value after 25 tabu iterations: 0.706413
Done optimise; elapsed = 4.65

> main.lay <- main.od$design
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How does the mixed-model design compare with a
fixed-model design for the mixed model?

> main.fix.od <- od(fixed = ~ Zones*MainPositions + Zones:Rows + Lines,
+ permute = ~ Lines,

+ maxit = maxit, search = search,

+ data = main.sys)

Done set up; elapsed = 0.00

Initial A-value = 1.664428 (75 A-equations; rank C 73)
A-value after tabu loop 1 1s 0.929683

A-value after tabu loop 25 i1s 0.912422

Hash table size 555

Final A-value after 25 tabu iterations: 0.912422
Done optimise; elapsed = 4.62

> # "### Calculate A-measure under mixed model

> main.fix.lay <- main.fix.od$design

> designAmeasures(mat.Vpredicts(target = ~ Lines - 1,

+ fixed = ~ Zones -1,

+ random = ~ MainPositions + Zones:(Rows + MainPositions) - 1,
+ G = as.list(vp.table$Vvalue[-4]),

+ design = main.fix.lay))

1
all 0_7455369 This compares with 0.706043, and is 1.06 times the mixed-model design.

The sed would only be slightly inflated (3%). 42



Expand the main-unit design to a split-unit design

#"### Expand main-unit design to add Carts with Conditions
PA_sys <- cbind(fac.gen(list(Zones = b, Rows = r, MainPositions = c, Carts = 2)),
data.frame(Lines = factor(rep(main.lay$Lines, each=2), levels=1:75),
Conditions = factor(rep(1:2, times=264),
labels = c("0 NaCl*,"100 NaCl®))))

#"### Randomize the whole design
PA_lay <- designRandomize(allocated
recipient

PA.sys[c('Lines", "Conditions')],

PA.sys[c(*'Zones", "Rows', "MainPositions", o Repermute
"Carts'™)], Rows

nested.recipients = list(Rows éFE("Zones", "MainPositions'™),

Carts = c("'Zones", "Rows",

"MainPositions™)),

seed = 51412)
PA._.lay <- cbind(fac.gen(list(Lanes = nlanes, Positions = posns)),

PA_lay)

#"### Add factors and variates Permute Carts within

PA.lay <- within(PA.lay, Zones-Rows-MaitnPositions cell
{

xMainPosn <- as.numfac(MainPositions)
xMainPosn <- -(xXMainPosn - mean(xXMainPosn))
MainUnits <- fac.combine(list(Rows, MainPositions))

1)) 43

+ + 4+ + 4+ VV +V + 4+ + 4+ + +VV + + + V V



4. Summary of constructing nonorthogonal designs

m More difficult to identify the systematic design for a nonorthogonal
design.

Not just a matter of using a standard, well-known design.

m Still use designRandomize to ensure a valid randomization and
designAnatomy to check the properties of any design.

m For this, It remains necessary to:

Divide factors based on allocation of factors (as well as fixed/random).

|dentify the crossing and nesting, which depends not only on the innate
relationships, but also the model employed to account for anticipated variation.

m Numeric covariates introduce partial aliasing (nonorthogonality
between allocated terms).
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Degrees of balance

m Three degrees of balance have been encountered in the designs presented.:

Orthogonal, and so balanced: all canonical efficiency factors (nonzero eigenvalues) are
one;

Balanced, but nonorthogonal: some canonical efficiency factors are not one, however,
they take just one value for (i) any recipient source or (ii) any allocated source when
confounded with a particular recipient source.

Unbalanced and so must be nonorthogonal: the canonical efficiency factors for at least
one source of type (i) or (ii)) above take more than one value.

m As we go down this list:
the degree of balance decreases and the complexity of the analysis increases;

m One of the great advantages of balanced designs is that all the standard errors of

estimates of contrasts for a source of type (ii) will be equal.
> All contrasts are treated equally.

> Easier to present the results.

> However, not always achievable.
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ldentifying an optimal design

m Several methods available for selecting an optimal design:

Deploy a standard design, like a randomized complete-block or split-unit
design, known to be optimal
— designRandomize can be used to obtain layouts for these.

Manually constructing a design, including the use of design keys for factorial
experiments (Patterson & Bailey, 1978), given enough knowledge of
combinatorics.

Consult a catalogue of designs (e.g. Cochran and Cox, 1957; Hinkelmann &
Kempthorne, 2005; agricolae , de Mendiburu, 2019).

Computer generation of designs:
o CycDesigN, od, SAS, JMP.
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5. What happens when there is missing data?

m Suppose the 18" plot in the YSD is lost.

m How does this affect the design’s properties? Jalelol e

+ + V V VvV V V

Plot of Lines

11 C D A B

#"## Set up a layout with a single missing value

YSD.missl.lay <- YSD.lay ] D E c

YSD.missl. lay$Lines[18] <- NA : - : :

#"## Get the anatomy of the layo columns

YSD.missl.canon <- designAnatomy(formodkae = list(plots = ~ Rows*Columns,
lines = ~ Lines),

data = na.omit

-missl.lay))

Need an NA for the plot, but cannot
have an NA for designAnatomy.
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The anatomy for a missing value

> summary(YSD.missl.canon, which.criteria = c(aeff", "xeff", "eeff", "order™))
Summary table of the decomposition for plots & lines (based on adjusted quantities)

Source.plots dfl Source.lines df2 aefficiency xefficiency eefficiency order

Rows 3 Lines 1 0.0500 0.0500 0.0500 1
Residual 2

Columns 4 Lines 4 0.0444 0.1968 0.0189 3

Rows#Columns 11 Lines 4 0.8948 0.9663 0.7681 3
Residual 7

Table of (partial) aliasing between sources derived from the same formula
Source df Alias In aefficiency xefficiency eefficiency order
Columns 4 Rows plots 0.9870 1.0000 0.9500 2

Columns is not orthogonal to Rows;
The design is not orthogonal It is partially aliased with Rows;

Columns is orthogonalized to Rows,
losing 1.3% in the process. 48



The anatomy for a missing value

> summary(YSD.missl.canon, which.criteria = c(aeff", "xeff", "eeff", "order™))
Summary table of the decomposition for plots & lines (based on adjusted quantities)

Source.plots dfl Source.lines df2 aefficiency xefficiency eefficiency order

Rows 3 Lines 1 0.0500 0.0500 0.0500 1
Residual 2
Columns 4 Lines 4 0.0444 0.1968 0.0189 3
Rows#Columns 11 Lines 4 0.8948 .9663 0.7681 3
Residual 7 f ‘//'
The design i1s not orthogonal Lines confounding is no

longer balanced.

Nor is it orthogonal to Rows.

|

Less Lines information confounded with
Rows#Columns (cf 0.9375 for the YSD).
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. . . [ 5Lines%—>Q<F 4 Rows
Confounding versus aliasing 5 Columns

5 lines 20 plots
Summary table of the decomposition for plots & lines (based on adjusted quantities)
Source.plots dfl Source.lines df2 aefficiency xefficiency eefficiency order

Rows 3 Lines 1 0.0500 0.0500 0.0500 1
Residual 2

Columns 4 Lines 4 0.0444 0.1968 0.0189 3

Rows#Columns 11 Lines 4 0.8948 0.9663 0.7681 3
Residual 7

Table of (partial) aliasing between sources derived from the same formula
Source df Alias In aefficiency xefficiency eefficiency order
Columns 4 Rows plots 0.9870 1.0000 0.9500 2

m Aliasing refers to nonorthogonality between sources in the same tier (panel):
l.e. both allocated or both recipient sources; e.g. Rows and Columns.

m Confounding refers to nonorthogonality between sources from different tiers
(panels):

l.e. an allocated and a recipient source; e.qg. Lines and Rows. =0




Confounding versus aliasing
m Confounding and aliasing are about the relationships between sources.

m An allocated (recipient) source can be aliased or partially aliased with another

allocated (recipient) source.
An aliased source is one that when the term for it is fitted, there is no information about its

source available.

A partially aliased source only loses some of its information to sources for previously fitted
terms, e.g. Columns is partially aliased with Rows.

Aliasing is to be avoided if possible, although sometimes it is purposefully employed (e.g. alias
potentially small three-factor treatment interactions with treatment main effects in fractional

factorial experiments).

m An allocated source can be confounded or partially confounded with a recipient

source.
It is confounded with a recipient source when all information about it is associated with that
recipient source.
If only part of the information is associated with the recipient source, then it is partially
confounded with the recipient source.
Confounding or partial confounding is unavoidable in experiments.
Confounding is preferred to partial confounding, if it is achievable (and provided there is a

Residual for the recipient source). 1



Confounding examples

In an RCBD, Lines is confounded with
Columns[Rows], i.e. all information about Lines is

m Confounding associated with the recipient source Columns[Rows].

> summary(RCBD.canon)
Source.plots dfl Source.lines df2 aefficiency eefficiency order
Rows 3
Columns[Rows] 20 Lines 4 1.0000 1.0000 1
Residual 16

m Partial Confounding

Source.plots dfl Source.lines df2 aefficiency xefficiency eefficiency order

Rows 3 Lines 1 0.0500 0.0500 0.0500 1
Residual 2

Columns 4 Lines 4 0.0444 0.1968 0.0189 3

Rows#Collumns 11 Lines 4 0.8948 0.9663 0.7681 3
Residual 7

In a YSD with a missing value, Lines is partially confounded
with Rows, Columns and Columns[Rows], i.e. some information
about Lines is associated with all recipient sources. 52



A missing treatment

m How does a missing treatment affect the properties of the design?
> #"## Set up a layout with a missing Line

> YSD.missA.lay <- YSD.lay

> YSD.missA. lay$Lines[YSD.missA.lay$Lines == "A"] <- NA
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The anatomy for a missing treatment

> #"## Get the anatomy of the layout

> YSD.missA.canon <- designAnatomy(formulae = list(plots = ~ Rows*Columns,

+ lines = ~ Lines),

+ data = na.omit(YSD.missA.lay))

> summary(YSD.missA.canon, which.criteria = c(Taeff", "xeff'", "eeff", 'order™))

Summary table of the decomposition for plots & lines (based on adjusted quantities)
Source.plots dfl Source.lines df2 aefficiency xefficiency eefficiency order
Rows 3

Columns 4 Lines 3 0.0909 0.0909 0.0909 1
Residual 1

Rows#Columns 8 Lines 3 0.9091 0.9091 0.9091 1
Residual 5

What has been the
Table of (partial) aliasing between sources derived from the same formula effect of the

Source df Alias In aefficiency xefficiency eefficiency order missing treatment?
Columns 4 Rows plots 0.9362 1.0000 0.9167 2

The design 1s not orthogonal 54



6. Systematic allocation and pseudoreplication

m It happens that randomization is not always desirable or possible.

m A grapevine experiment is to be run in two greenhouses:

One greenhouse is to be kept at ambient temperature and the other is to be
cooled;

Of the two greenhouses, one is naturally warmer than the other and so needs
to be the warm greenhouse.

So randomization is not desirable.

m Within each greenhouse, two salinity treatments (control and saline)
are to be applied to 12 varieties.

m The combinations of Heat, Salinity and Varieties are to be replicated
6 times.
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Recipient layout (coloured by Main unit) (Numbers are pots.)

= = GHouse: 1 GHouse: 1 GHouse: 2 GHouse: 2
GrapeVIne deS|gn Sides: N Sides: § Sides: N Sides: §
m Within each greenhouse: s |6 s e|[s][s s|s|[s]c s[5 5]

There are 2 SIdeS (blue : 1BI] : 1BI] : 1BI] : 1BI] : 1BI] : 1BI] : 1BI] : 1BI]

rectangles), with 6 main units
per Side (pink and yellow lines

o =] =] o n = [ ] [ %] -
| | | | | | | | .

1 1 1 1 1 1 1 1
separates main units). L Tl | B LA A | S L S | S .
z 5 | 6 5 | 8 5 | 6 5 | 8 5 | 6 5 | 8 5 | 6 5 | 8
A split-unit design is to be Sol7 e 7]ell7]s 7]l 7]e]l7]e 7]
Used tO aSSign 1149 (10 9 | 10 9 |10 9 | 10 9 |10 9 | 10 9 |10 9 | 10
o . o 12411 |12 11 [ 1211 |12 11 |21 |12 11| 1211 |12 11| 12
o Salinities to main units; BN o e i | o e i | o e e | o E e
o Varieties to 12 pots (subunits) 14{3 |4 3| alls |4 3 |aQ]ls|4 3 |afls|s 3|4
In each main unit. 1515 | 86 5 | 8 5 | 6 5 | 6 5 | 6 5 | 8 5 | 6 5 | 8
Split-unit design because: i e L | | L | L .
_ 1749 |10 9 (10l 9 |10 9 |10fl9 |10 9 |10f]l9s |10 39 |10
0 Large differences between 18411 [ 12 11 | 12f]11 |12 11 | 12f]11 |12 11| 12f]11 |12 11| 12

Salinities;
o Variety differences are the most Main.unit [11 [ 2
Important. 56
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Grapevine design

m Anticipated model:

Heat * Salinity * Varieties |
Ghouses + Ghouses:Sides +
Ghouses:Sides:BRows +
Ghouses:Sides:BCols +

Main units Ghouses:Sides:Brows:BCols +
Subunits

Ghouses:Sides:Brows:Bcols:Pots.

___} ------ 42 Greenhouses
2 Sides in G

o —3 BRows inG, S
2 Salinities ——>O<\2 BColsinG, S

/ 2 Heats

\ 12 Varieties

~

Row

/ 12Pots in G, S, Br, Bc /

48 treatments 288 pots

Recipient layout (coloured by Main unit)

GHouse: 1 GHouse: 1 GHouse: 2 GHouse: 2
Sides: N Sides: § Sides: N Sides: 5

11 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
29 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4
31 5§ & 5 & 5 [ 5 & 5 & 5 & 5 & 5 &
41 7 g 7 g 7 8 7 8 7 8 7 8 7 g8 7 8
59 9 10 9 10 9 10 9 10 9 10 9 10 ) 10 ) 10
694 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12
71 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
81 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4
94 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 &
1049 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8
111 9 10 9 10 9 10 9 10 9 10 9 10 8 10 8 10
124 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12
134 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
144 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4
151 &6 & 5 & 5 B 5 B 5 6 5 6 5 & 5 &
1691 7 8 7 8 T 8 T 8 7 8 T 8 7 8 7 8
174 9 10 9 10 9 10 9 10 9 10 9 10 9 10 9 10
1894 1 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Column

Main.unit [ |1 [ ]2

To balance Salinity, a 3 x 2 extended Latin
square design, based on 2 x 2 Latin

squares is to be used in each Side.
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Generating the
] g ] 4 2 Heats I N 42 Greenhouses \

systematic design 2 Sidesin G

" N L —3 BRows inG, S

IN R 2 Salinities ——»Q(\z BCols in G. S
Generate Heat and \_12 Varieties —; 12Pots in G, S, BR, BC -
Varieties in standard 48 treatments 288 pots
order; the 12 works Generate the recipient
as It a factor with 12 factors indexing the pots.

levels occurs in this
position. \

> split.sys~<¢_cbind(fac.gen(list(GHouse = 2, Sides = c('N", "S'),

+ fac.gen(list(Heat = c("Warm™, "Cool'™), 12, Varieties = "'77
+

+

+

Salinity = factor(rep c(designLatinSquys(Z),1,2,4/%’

Salinity has to be
assigned using Extended
Latin Squares (ELS).

designLatinSquyng, start = c(2,1)),2,1),

each = 12, times = 2
IabeIS — C(llcontrolll’ llNall)))

Pair of ELS designs
repeated twice, one for
each GHouse. 58

Two Latin squares with
different starting rows.



Systematic layout (coloured by Salinity)

Systematic ot Gt Gowed G
grapevine design

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Column

m Numbers are
Varieties.

w0 e~ o B W R =

Row

=% =k =k =k =k =k =k =k =k
 ~N @ ot R W M =2 O

Salinity [ Control [] Na 59



Randomizing the

/2 Heats ———} ------ 42 Greenhouses \

grapevine design 2 Sides in G
m Use designRandomize from dae nities —3 BRowsinG, S
g | 2 Salinities —C—|_ 5 BCols in G.S
to randomize the systematic layout. o

The randomization is determined by \ 12 Varieties — 12Pots InG, S, BR,BC )
the nesting relationships between the 48 treatments 288 pots
recipient factors.

> split.lay <- designRandomize(allocated = split.sys[c("'Heat", "Salinity', '"Varieties")],

- recipient = split.sys[c("'"GHouse", "'Sides",

+ ""BRows', "'BCols', "'Pots')],

+ nested.recipients = list(Sides = "GHouse",

+ BRows = c("'Sides", "GHouse'),

+ BCols = c("Sides", "GHouse'),

+ Pots = c('"Sides", "GHouse',

+ "BRows', ""BCols'™)),

+

+

except = "'GHouse",
/ seed = 64131)

The except option allows the generation of a design, The nested.recipients specifies the

in which Heat is systematically allocated, while Salinity nesting shown in the pots panel; factors
and Lines are randomized. not nested are assumed to be crossed. g,



Greenhouse layout (coloured by Salinity)

Grapevine design | e Siten s oy e s

m \WWarm has been :
systematically assigned to |
the first Greenhouse. 6
m Within a Side there are 2 :
columns (BCols) of main ;-
units: .
» One has 2 main units with 12
Control and the other 2 with ::
Na. s
m A complete set of the 12 16
Varieties is randomized ::

within each main unit. R R S R R

Salinity ] Control [] Na 61



Matches the

Properties of the grapevine design |~ nested.recipients

> split.canon <- designAnatomy(formulae = Iistdtests = ~ GHouse/Sides/(BRows*BCols)/Pots,

+ cond = ~ Heat*Salinity*Varieties),

+ data = split.lay)

> summary(split.canon, which.criteria=c("aeff", "order™)) Heat is confounded

Summary table of the decomposition for tests & cond (based on adjusted quantities) with GHouse, an

‘_d%/ effect of the
Source. tests dfl Source.cond fciency order — pseudoreplication.

GHouse 1 Heat 1 1.0000 1
Sides|[GHouse] _ 2 Salinity (&
BRows[GHouse:S!des] 8 o Heat#SaIinity) are
BCols[GHouse:Sides] 4 Salinity 1 0.1111
Heat#Sal inity 1 0.1111 not orthogonal, but
Residual 2 o — most mformaU_on IS
BRows#BCols[GHouse:Sides] 8 Salinity 1 0.8889 1 confounded with
Heat#Sal inity 1 0.8889 1 | Brows#Bcols[GH:S].
Residual 6 (Design property)
Pots[GHouse:Sides:BRows:BCols] 264 Varieties 11 1.0000 1
Heat#Varieties 11 1.0000 1
Salinity#Varieties 11 1.0000 1 \
Heat#Sal inity#Varieties 11 1.0000 1 All Varieties
Residual 220 effects are

The design is not orthogonal orthogonal.

But all orders are one and so it is balanced. 62



Prior allocation model for the grapevine design

Summary table of the decomposition for tests & cond (based on adjusted quantities)

Source.tests dfl Source.cond

T2 aefficiency order

GHouse 1 Heat 1 1.0000 1

Sides[Ghouse] 2

BRows[GHouse:Sides] 8

BCols[GHouse:Sides] 4 Salinity 1 0.1111 1
Heat#Salinity 1 0.1111 1
Residual 2

BRows#BCols[GHouse:Sides] 8 Salinity 1 0.8889 1
Heat#Salinity 1 0.8889 1
Residual 6

Pots[GHouse:Sides:BRows:BCols] 264 Varieties 11 1.0000 1
Heat#Varieties 11 1.0000 1
Salinity#Varieties 11 1.0000 1
Heat#Salinity#Varieties 11 1.0000 1
Residual 220

The design 1s not orthogonal

To have a prior allocation model that will fit, one of GHouse and Heat must be removed.

The confounding of
Heat and GHouse, is
exhaustive in that all
GHouse information is
mixed up with Heat
differences (there is no
Residual GHouse

Residual).

That is Heat and
GHouse are
inextricably mixed up
together so that one
cannot say which part
of any difference
associated with either
factor is due one or
other of the factors.

It means that the initial
allocation model will
not fit.

63



Prior allocation model for the grapevine design
m GHouse is the obvious choice so that Heat and its interactions are retained.

Heat * Salinity * Varieties | Ghedses—=+ Ghouses:Sides + Ghouses:Sides:BRows
+ Ghouses:Sides:BCols + Ghouses:Sides:Brows:BCols +

i This model is a "model
Ghouses:Sides:Brows:Bcols:Pots.

of convenience”: it

Summary table of the decomposition for tests & cond (based on adjusted quantities) gives aflt'_
However, it does not
Source.tests dfl Source.cond df2 aefficiency order contain all the
GHouse:Sides 3 Heat 1 1.0000 1 pertinent sources of
Residual 2 variation in the
BRows[GHouse:Sides] 8 experiment.
BCols[GHouse:Sides] 4 Salinity 1 0.1111 1
Heat#Salinity 1 0.1111 1 This revised anatomy
Residual 2 shows that Sides
BRows#BCols[GHouse:Sides] 8 Salinity 1 0.8889 1 variability will be used
Heat#Salinity 1 0.8889 1 for Judg|ng overall
Residual 6 Heat differences; this
Pots[GHouse:Sides:BRows:BCols] 264 Varieties 11 1.0000 1 is very Iikely to be an
Hea?#\_/arletl?s _ 11 1.0000 1 underestimate of the
Sal |n|ty1:¢Vz_ar|et|e? _ 11 1.0000 1 variability affecting
Heat#Salinity#Varieties 11 1.0000 1

Residual 290 Heat differences. 64



/. Summary of confounding and aliasing

m In comparative experiments,
there is always some confounding; and
there may be some aliasing.
m All allocation, be It systematic, haphazard, spatial or randomized,

results in confounding:
designAnatomy does not distinguish between different types of allocation.

Properly replicated treatments can be systematically allocated.

o The danger with systematic replication is that it will be confounded with any systematic
trends associated with the factors to which it is allocated.

m Pseudoreplication manifests as exhaustive confounding.

m Numeric covariates introduce partial aliasing (nonorthogonality
between allocated terms).

Missing values introduce partial aliasing and confounding. 65




Practical session for Nonorthogonal experimental
design in R

1. Using dae and od to obtain randomized layouts for orthogonal
designs.
An alpha design
A BIBD.
A nonorthogonal row-column design for a Casuarina trial.
A 25-line wheat experiment from Gilmour et al. (1995).
A small environmental experiment.

2. Again, you have only to follow the script that has been given.
3. There are some questions for you to answer about each design.
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