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1. Multiphase designs

m Brien (2017) gives a review, including published applications.

m Three introductory papers are Brien and Bailey (2006), Brien et al.
(2011) and Brien (2019).

m “Normal” two-phase experiments (Brien et al., 2011,Section 4) involve
a single-randomization in each phase.
This implies that a design is required for each phase.

The object of the second phase is to evaluate material produced in the first
phase and one or more response variables are measured in the second
phase.

There may also be response variables from the first-phase.

The phase is the period of time during which a set of units are engaged in
producing their outcome: material and/or response variables.

One phase might overlap another phase.



S : . :
1.1 A simple two-phase athlete training experiment

Brien, Harch, Correll, Bailey (2011)

m Suppose in a simple two-phase athlete training experiment:
In addition to heart rate taken immediately upon completion of a test,
the free haemoglobin is to be measured using blood specimens taken from
the athletes after each test, which are to be transported to the lab for
analysis.

m The experiment consists of a test phase and a laboratory phase:

Test phase: 36 tests involving 3 athletes in each of 4 months; heart rate is
measured and a blood specimen taken.

o The unit is a test taken by an athlete.

o The outcomes are the heart rate, a response variable, and a blood sample, material for

the second phase.

Laboratory phase: each month 3 blood samples are taken to the laboratory
for analysis.

o The unit is a blood specimen.

o The outcome is the free haemoglobin in the blood specimen, a response variable.
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First phase: athlete testing
Brien, Harch, Correll, Bailey (2011)

m Recall from the standard athlete training experiment in Session 1 that
9 training conditions are to be investigated:
combinations of 3 surfaces and 3 intensities of training.
m In each of the 4 Months of testing:

3 endurance athletes are recruited.
Each athlete undergoes 3 tests, separated by 7 days, under 3 different training

conditions.
m A split-unit design was employed to allocate Intensities and Surfaces.
N g 4 Months
3 Intensities »3 Athletes in M
3 Surfaces ] \»3 Tests in M, A
9 training conditions 36 tests

m For the second phase the 36 tests need to be allocated for analysis
In the laboratory. 5
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Second laboratory phase

m A restriction in the second phase:

The blood specimens from the first phase need to be processed as soon as
possible (not held for 4 months).

Thus, the 9 specimens collected each month are to be processed together.

m Suppose that it is decided to process them in a random order,

That is, it is assumed that there is no systematic trend across the processing
of the 9 samples so that a nested second-phase design is required.

-
~ 4 Months ~  -------71----- »4 Batches

3 Intensities »3 Athletes in M

3 Surfaces ) \»3 Tests in M, A 7 \>9 Locations in B

9 training conditions 36 tests 36 locations




A simple two-phase athlete training experiment
(cont’'d)

-
~ 4 Months  -------1----- »4 Batches

3 Intensities »3 Athletes in M

3 Surfaces ] \»3 Tests in M, A D, \>9 Locations in B

9 training conditions 36 tests 36 locations

m |t is two-phase with three sets of objects:

training conditions, tests and locations:

o training conditions are allocated in the first-phase and the second-phase i.e. only ever
allocated.

o tests are recipients factors in the second phase and are allocated factors in the second
phase i.e. different roles in the two phases.

o locations are recipient factors in the second phase i.e. only ever recipient.



A simple two-phase athlete training experiment
(cont’'d)

-
N 4 Months -------7----- »4 Batches

3 Intensities »3 Athletes in M

3 Surfaces ] \»3 Tests in M, A 7 \>9 Locations in B

9 training conditions 36 tests 36 locations

m It is described as involving two composed allocations, one of two
types of allocations in a chain:

Training conditions are allocated to tests and tests to locations;
m Here, the second phase begins during the first phase.

m Have not allowed for an overall, processing-order effect.
More about that soon.



Randomization in the second phase

m Principle 7 (Allocate all and randomize in laboratory) (Brien et al, 2011):

The laboratory-phase design should always allocate all the first-phase unit
factors, as well as any laboratory treatments, to the laboratory units, using
randomization wherever possible.

m As Is the case for any randomization, randomizing the lab phase:
Guards against unanticipated systematic effects.
Justifies the form of the variance matrix used for the experiment.
Required for a valid estimate of error.

m Additionally, for a second (lab) phase, randomizing

compensates for unfortunate randomizations in the first phase.
m However, have seen that practical problems can limit randomization.

m But, are there other reasons for not randomizing the second phase?
Does it make it difficult to estimate first-phase phenomena?
For example, spatial correlation, linear trends, unequal variances?



The design species for a normal two-phase design

-
N 4 Months ------|---- » 4 Batches
3 Intensities 3 Athletesin M
3 Surfaces C 3 Testsin M, A D, ¢ 9 Locationsin B

J
9 training conditions 36 tests 36 locations

m The four design species for allocating sets of objects when there is an
allocation in each of the two phases (Brien, 2019):

First-phase design: allocated and recipient objects from the first phase
o (training conditions and tests);

Second-phase design: first- and second-phase recipient objects
o (tests and locations);

Cross-phase design: first-phase allocated objects and second-phase recipient

objects
o (training conditions and locations);

Two-phase or combined design: all three sets of objects.
m designTwophaseAnatomies produces the four anatomies for them,




The anatomy for the first phase design (from Session 1)

> split.canon <- designAnatomy(formulae = list(tests = ~Months/Athletes/Tests,
+ cond = ~Intensities*Surfaces),
+ data = split.lay) .
> summary(split.canon, which.criteria="none") Formulae for recipient
\ and allocated.
Summary table of the decomposition for tests & cond Layoutis in split. lay.
Source.tests dfl Source.cond df2
Months 3
Athletes[Months] 8 Intensities

Residual
Tests[Months:Athletes] 24 Surfaces

Intensities#Surfaces

Residual 1

OB NOODN

11



Construct two-phase design

~

3 Intensities
3 Surfaces

/

4 Months ------|---- » 4 Batches
3 Athletes in M

J

9 training conditions

m Have to randomize tests (and training conditions) to locations

» 3 Tests in M, A » 9 LocationsinB
. J -

36 tests 36 locations

> egl.lay <- designRandomize(

allocated

split.lay,

+

recipient

list(Batches =

4, Locations = 9),

nested.recipients

list(Locations =

"Batches'),

+ + +

except
seed = 71230)

Locations

=0

L= I R

w oo

""Batches",

Randomized Intensities-Surfaces combinations

Athletes
E
Mz
[]-

1 2 3 4
Batches (Months) 12



Check properties of the multiphase design

> egl.canon <- designAnatomy(formulae = list(locs = ~ Batches/Locations,

+ test = ~ Months/Athletes/Tests,

+ cond = ~ Intensities*Surfaces),

+ data = egl.lay) w

> summary(egl.canon, which.criteria=c("aeff"", "order')) Three formulae reflecting the

factor-allocation diagram

Summary table of the decomposition for locs, test & cond _—
(no limit on the number).

Source.locs dfl Source.test df2 Source.cond df3 aefficiency order
Batches 3 Months 3 1.0000 1
Locations[Batches] 32 Athletes[Months] 8 Intensities 2 1.0000 1
Residual 6 1.0000 1
Tests[Months:Athletes] 24 Surfaces 2 1.0000 1
Intensities#Surfaces 4 1.0000 1
Residual 18 1.0000 1

m All sources are orthogonal and all, except Months, are confounded with

Locations|[Batches].

m Note also that there are no residuals for Batches or Locations[Batches].

They are exhaustively confounded, which will always be the case when the numbers of objects
are equal for two consecutive tiers.

m Question that remains: what mixed model to fit? 13



Initial allocation model

~ [ 4 Months ~ -------71----- »4 Batches
{ 3 Intensities »3 Athletes in M
3 Surfaces »3 Testsin M, A »9 LocationsinB
J g J N
9 training conditions 36 tests 36 locations

m Initial allocation model (like the anatomy, reflects the factor allocation diagram):

Intensities + Surfaces + Intensities:Surfaces |
Months + Months:Athletes + Months:Athletes:Tests +
Batches + Batches:Locations.
m However, this model will not fit because of confounding between tests and

locations.

14



Prior allocation model

Summary table of the decomposition for locs, test & cond

Source.locs dfl Source.test df2 Source.cond df3 aefficiency order
Batches 3 Months 3 1.0000 1
Locations[Batches] 32 Athletes[Months] 8 Intensities 2 1.0000 1
Residual 6 1.0000 1

Tests[Months:Athletes] 24 Surfaces 2 1.0000 1

Intensities#Surfaces 4 1.0000 1

Residual 18 1.0000 1

m Need to remove
One of Months and Batches, and make the retained term fixed:
Locations:Batches or both Months:Athletes and Months:Athletes:Tests.
m  Must retain Months:Athletes, otherwise it would be pooled, either into Months:Athletes:Tests or
Batches:Locations.
m The prior allocation model is the model for the first phase and is a model of convenience:

Months + Intensities + Surfaces + Intensities:Surfaces |
Months:Athletes + Months:Athletes:Tests.

m The very important point is that, while they are not in the model, the lab terms contribute to those
that are e.g. Months is not just due to Months differences, but is also due to Batches variance. 15




1.2 Allowing for lab order in the athletic experiment
Brien (2017)

m If it Is expected that there will be consistent differences between
ocations across the months, then the initial allocation model would
ne:

Intensities + Surfaces + Intensities:Surfaces |

Months + Months:Athletes + Months:Athletes:Tests + The Locations term

Batches + Locations ¥ Baiches:Locations. has been added.
That Is, Batches and Locations are now crossed (similar to RCBD versus
LSD).

A row-column design is required for the crossed, second phase.

16



Design considerations

m To produce a good two-phase design, the allocation of the first phase to locations

cannot ignore Intensities and Surfaces: a good cross-phase design is needed.

In the previous design, they could be ignored because everything within Months was being
randomized to Locations within Batches.

m In addition, the second-phase design cannot be ignored because the split-unit
nature of the first-phase design must be taken into account.
Because of the time constraints Months must be associated with Batches.

Within a month, assigning Athletes to triples of consecutive Locations is consistent with the
use of a split-unit design in the first-phase.

Tests can then be assigned to the locations within a triple.

m Thus the cross-phase design must efficiently assign Intensities to Location triples
and Surfaces to the Locations within a triple.

ST I \
The factor 5 — )/ 4 Months ----- - » 4 Batches
allocation 3 Intensities » 3 Athletes in M ! |
diagram { 3 Surfaces \\ \ 3 TestsinM, A 9 Locations

9 training conditions 36 tests 36 locations 17



Intensities-Surfaces combinations in systematic cross-phase design

SySte matic 1 A B,1 C,2 C,3
cross-phase j =2 =2 =
_ 3 A3 B,3 C,1 C,2
design o] B c A2 B.3 intensities

25 B,2 C,2 A3 B,1 L1

= Abalanced 3 o, - v = =5
factorial design ) > v = s
(Hinkelmann & . = " =, A’1
Kempthorne, 2005, | > v o s
section 12.5). , : : :

Batches (Months)
A 3 x 4 extended Latin square (LS + column of repeats) is used to allocate

Intensities to the triples (colours & letters);
A 3 x 4 extended Latin square is used for a Locations triple x Batches; the same

extended Latin square is used for all 3 triples.
To ensure no repeat Intensities-Surfaces combinations for a Location, the
repeated columns for the two ELSs must be associated with different Batches.

The Intensities and Surfaces are arranged in a split-unit pattern. 18
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Construct a systematic second-phase design and
randomize It ELSD

+ + 4+ + V VVVVV+ + + + + + V V

#"## Generate a systematic cross-phase design for Intensities and Surfaces
eg2.phx.sys <- cbind(fac.gen(list(Batches = 4, Locations = 9)),
data.frame(Intensities = factor(repdc(designLatinSquys(B), c(3,2,1))|,
each = 3), labels = LETTERS[1:3]),
Surfaces = Ffactor(c(repi1:3, times = 3),
rep1:3, times = 3),
repc(2,3,1)|, times 3),
repc(3,1,2)|, times = 3)))))
#"## Generate a systematic two-phase design by bringing in first-phase recipient factors
eg2.phx.sys$Months <- eg2.phx.sys$Batches
eg2.sys <- merge(split.lay, eg2.phx.sys) #merge on commmon factors Months, Intensities & Surfaces
eg2.sys <- with(eg2.sys, eg2.sys|order(Batches,Locations),])
#"## Allocate the second phase
eg2.lay <- designRandomize(allocated

An ELSD

eg2.sys[c("'Months", "Athletes"™, "Tests",
"Intensities', "Surfaces')],
recipient = eg2.sys[c(''Batches", '"Locations')],

except = "Batches"
seed 243526) \
Don’t randomize Batches.

19
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Systematic
Versus
randomized
designs

m The randomized design
IS obtained from the
systematic design by
permuting:

» 1ts rows (Locations),

» but not its columns
(Batches).

Intensities-Surfaces combinations for systematic two-phase design

1
2
3

f 9

Athletes

Locations
o o

w o =~

1 2 3 4
Batches (Months)

Randomized Intensities-Surfaces combinations

Athletes

Locations
(L] (o] ~ (=2] (3, ] =9 w N -

1 2 3 4 20
Batches (Months)



Anatomy of the two-phase design allowing for lab
processing order

Summary table of the decomposition for locs, test & cond (based on adjusted quantities)

Source.locs dfl Source.test df2 Source.cond df3 aefficiency order
Batches 3 Months 3 1.0000 1
Locations 8 Athletes[Months] 2 Intensities 2 0.0625 1
Tests[Months:Athletes] 6 Surfaces 2 0.0625 1
Intensities#Surfaces 4 0.2500 1
Batches#Locations 24 Athletes[Months] 6 Intensities 2 0.9375 1
Residual 4 1.0000 1
Tests[Months:Athletes] 18 Surfaces 2 0.9375 1
Intensities#Surfaces 4 0.7500 1
Residual 12 1.0000 1
The design is not orthogonal /// /f
. . y The Residual for Intensities has The
Most of th_e Information ab.out Intensities and been reduced from 6 to 4 df. design is
Surfaces is confounded with balanced

Batches#Locations. 1




Prior allocation model

Summary table of the decomposition for locs, test & cond (based on adjusted quantities)

Source.locs dfl Source.test df2 Source.cond df3 aefficiency order
Batches 3 Months 3 1.0000 1
Locations 8 Athletes[Months] 2 Intensities 2 0.0625 1
Tests[Months:Athletes] 6 Surfaces 2 0.0625 1

Intensities#Surfaces 4 0.2500 1

Batches#Locations 24 Athletes|[Months] 6 Intensities 2 0.9375 1
Residual 4 1.0000 1

Tests[Months:Athletes] 18 Surfaces 2 0.9375 1

Intensities#Surfaces 4 0.7500 1

Residual 12 1.0000 1

m Same exhaustive confounding issues as for the nested second-phase design.
m Must retain Locations and Months:Athletes to prevent undesirable pooling.

m One possible prior allocation model is the model for the first phase plus Locations:

Months + Intensities + Surfaces + Intensities:Surfaces |
Months:Athletes + Months:Athletes:Tests + Locations.

m Again this is a model of convenience and does not portray all the sources of variation affecting the
response variables for this experiment 22




Using od to construct a design

m Split-plot designs
Involve a two-step process to optimize:

i.  optimize the main-unit factors;
i.  optimize the sub-unit factors, given the main-unit optimization;

Only optimizes main effects.

23



Optimizing the main-unit, cross-phase design

> #"## Optimize the main-unit, cross-phase design, based on assigning Intensities to Locations tripletss
> #"### Set up a randomized starting design

> eg2.main.ini <- cbind(fac.gen(list(Batches = 4, Triplets = 3)), Set up an

" fac.gen(list(Intensities = LETTERS[1:3]), times = 4)) RCBD for
> eg2.main.ini <- designRandomize(allocated = eg2.main.ini[c("Intensities™)], Intensities
+ recipient = eg2.main.ini[c("Batches”,"Triplets™)],as a Starting
+ nested.recipients = list(Triplets = "Batches"), design.

+ seed = 61461)

> #"### Use od to optimize the main-unit design

> eg2.main.od <- od(fixed = ~ Batches + Triplets + Intensities, Use swap 0]

+ permute = ~ Intensities, swap = ~ Batches, keep the design

+ maxit = maxit, search = "tabu",

+ data = eg2.main.ini) resolved for

Mon Oct 7 15:00:29 2019 Batches.

Initial A-value = 0.727273 (3 A-equations; rank C 2)
A-value after tabu loop 1 1s 0.533333
A-value after tabu loop 2 1s 0.533333

A-value after tabu loop 50 1s 0.533333

Hash table size 4

Final A-value after 50 tabu iterations: 0.533333

> eg2.main.des <- eg2.main.od$design 24



Optimizing the sub-unit, cross-phase design

> #"## Optimize the sub-unit, cross-phase design, based on assigning Surfaces to Locations within triplets
> #"### Set up a randomized starting design A starting-design design

> eg2.ini <- cbind(fac.gen(list(Surfaces = 3), times = 12), with Surfaces randomized
+ fac.gen(list(Batches = 4, Triplets = 3, Locations = 3))) oy -

> eg2.ini <- designRandomize(allocated = eg2.ini["Surfaces'], within Batches—Trlplets.
+ recipient = eg2.ini[c('Batches', "Triplets'™, "Locations™)],

+ nested.recipients = list(Locations = c(''Batches™, "Triplets')),

+ except = c("'Batches™, "Triplets™),

+ seed = 65435) ] .

> eg2.ini$Locations <- with(eg2.ini, fac.combine(list(Triplets, Locations))) Add_ the main-unit

> eg2.ini <- merge(eg2.ini, eg2.main.des[c('Batches", "Triplets”, "Intensities)]) (jeSngL

> # ### Use od to optimize the sub-unit design

> eg2.od <- od(fixed = ~ Batches*Triplets + Locations + Surfaces, Use swap to onIy

+ permute = ~ Surfaces, swap = ~ Batches:Triplets, : oy

+ maxit = maxit, search = search, mterchange W_Ithm

N data = eg2.ini) Batches-Triplets,

Mon Oct 7 15:02:14 2019 so keeping main-unit

Initial A-value = 0.191781 (3 A-equations; rank C 2) design.

A-value after tabu loop 1 i1s 0.177778
A-value after tabu loop 2 i1s 0.177778

A-value after tabu loop 50 i1s 0.177778
Final A-value after 50 iterations: 0.177778 25



Produce the two-phase design based on the od
designs

Combine cross-phase

> eg2.des <- eg2.od$design

> split.lay$Batches <- split.lay$Months and first-phase designs.

> eg2.lay <- merge(eg2.des, split.lay)

> eg2.lay <- with(eg2.lay, eg2.lay[order(Batches, Locations),])

> eg2.lay <- designRandomize(allocated = eg2.lay[c('Months","Athletes", " Tests",

+ "Intensities","Surfaces")], Randomize the first-
+ recipient = eg2.lay[c(''Batches", "Locations")], phase design to the
N except = "Batches”, second-phase units.
+ seed = 87620)

> #"## Check properties of the design

> eg2.canon <- designAnatomy(formulae = list(locs = ~ Batches*Locations,

+ test = ~ Months/Athletes/Tests,

+ i cond = ~ Intensities*Surfaces), The interaction and

+ data = eg2.lay)

Warning messages: Surfaces main effects

1: In projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q) : are not orthogonal.
Intensities#Surfaces and Surfaces are partially aliased In Locations&Tests|[Months:Athletes]

2: In projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q) :
Intensities#Surfaces and Surfaces are partially aliased iIn Batches#lLocations&Tests|[Months:Athletes]

26



Properties of the od-based two-phase design

Summary table of the decomposition for locs, test & cond (based on adjusted quantities)

Source.locs dfl Source.test df2 Source.cond df3 aefficiency order
Batches 3 Months 3 1.0000 1
Locations 8 Athletes[Months] 2 Intensities 2 0.0625 1
Tests[Months:Athletes] 6 Surfaces 2 0.0625 1

Intensities#Surfaces 3 0.1121 3

Residual 1 1.0000 1

Batches#Locations 24 Athletes|[Months] 6 Intensities 2 0.9375 1
Residual 4 1.0000 1

Tests[Months:Athletes] 18 Surfaces 2 0.9375 1

Intensities#Surfaces 4 0.6559 4

Residual 12 1.0000 1

Table of (partial) aliasing between sources derived from the same formula

Source df Alias In aefficiency order
Intensities#Surfaces 3 Surfaces Locations&Tests[Months:Athletes] 0.1121 3
Intensities#Surfaces 4 Surfaces Batches#lLocations&Tests[Months:Athletes] 0.6559 4

The design is unbalanced and the
Interaction efficiency is low
(cf 0.75 for manual construction). 27

The design 1s not orthogonal



Properties of the four species of od-based designs

m Used designTwophaseAnatomies to output the 4 species of
designs for a two-phase design.
The anatomy of the two-phase design has been presented.
The second-phase anatomy is:

Summary table of the decomposition for locs & test

Source.locs dfl Source.test df2 aefficiency eefficiency order
Batches 3 Months 3 1.0000 1.0000 1
Locations 8 Athletes[Months] 2 1.0000 1.0000 1
Tests[Months:Athletes] 6 1.0000 1.0000 1
Batches#Locations 24 Athletes[Months] 6 1.0000 1.0000 1
Tests[Months:Athletes] 18 1.0000 1.0000 1

It shows that the allocation of second-phase units (tests) to first-phase units
(locations) is orthogonal.

This is desirable because it means that the variance matrix is relatively
straightforward.



2. Partially replicated (p-rep) designs

m These designs were introduced by Cullis et al. (2006)

m They are a variation of the augmented designs, introduced by
Federer in 1956.

m An augmented design is one in which a design is used to allocate
replicated treatments and these are then augmented with
unreplicated treatments.

m The particular features of a p-rep design are:

Both the unreplicated and replicated treatments are new genotypes; in
augmented designs, the unreplicated treatments are usually controls or check

varieties;
The p-rep designs are spatially-optimized.

29



2.1 A field experiment — a single-phase p-rep

] (Cullis, Smith &
m 576 Lines on 60 rows x 12 columns. Coombes, 2006)
Dashed line because
2 Blocks i I ted t
576 Lines —_ 30 WRows in B ines are allocated to
12 Columns the plots factors, but
576 lines not using classic

720 plots randomization.

m 144 Lines are to be duplicated — p = 0.25.
m Local spatial correlation is expected and a spatial design is needed.

m The initial allocation model is: ~ Lines and Blocks
iInterchanged between

Lines | Blocks + Blocks:WRows + Columns + fixed-random model;

Blocks:Columns + Blocks:WRows:Columns). > Autocorrelation for Rows
and Columns is added,;

m The prior allocation model is: > units is added for

Blocks | Lines + Blocks:WRows + Columns + nugget variance.
Blocks:Columns + units + arl(Blocks:WRows):ar1(Columns). 30




A field p-rep — variance parameters

m The prior allocation model:

Blocks | Lines + Blocks:WRows + Columns +
Blocks:Columns + units + arl(Blocks:WRows):ar1(Columns).

m To search for a spatially-optimized design using od need to specify
values for the variance parameters.

m The general way to do this is to
set the residual (or identity) term component to 1: ¢ggrec = 1;
Use yto denote the ratio of each component to the residual: y = @ / @i

m Suppose past experience tells us that the following are reasonable
values (Smith et al, 2006, p.405):

The magnitude of ¢_equals that of ¢ggrc; ¥, 1S the nugget variance;
the ps are the first-order autocorrelation parameters. 31




A field p-rep — setting up

VvV V.V V V V VvV VvV V V V V V V V V V VYV

#"## Set up constants
g <- 576 # Nno. genotypes
ndup <- 144 # no. duplicated genotypes

b <- 2 # no. blocks
r <- 60 # Nno. rows

c <- 12 # no. columns
n <- r*c # no. Plots

#"## Set up variance parameters

> #"## Set od options
- > maxit <- 50
9-3% = 05 > search <- "tabu+rw"
g-gc<; O(-)105 > od.options(P = 0.10, localSearch = 10000, tabuStop = 100)
g- - 0.
g-u <- 0.5
g.BRC <- 1.0
rho.R <- 0.6

rho.C <- 0.4
params <- c(g.L, g.BR, g.C, g.BC, g.u, g.BRC, rho.R, rho.C)
names(params) <- c('g.L", "g.BR", "g.C", "g.BC", "g.u", "g.BRC", "rho.R"™, "rho.C")

32



L :S390]g

Z :syoolg

11 4
. 24 13 14 5 16 7 0 2 23 24
3 5 6 7 35
A field p-rep iESSE=SEEE - E=E=a= =
5 9 5 51 2 3 ) 7 59
6161 62 63 64 65 66 67 68 69 7 71 72
71 7 74 75 7 77 78 79 80 1 82 84
n n n n 8 1 8F 86 87 8 9 9 ;
91 7 98 1 2 103 104 5 1 107 108
— Initial design e == ' e i
111 22 23 124 25 26 127 12 9 0 13 32
o i
> #"## Generate a simple lattice for Lines 1:144 o en a2 23 341 a4 a8 245 | 001 | 257 | 262 16
2 4 2 g
- 1641__194 396 9 7 66 244 486 439 266 6 28
> # 1;- ;I ;%2 ‘é 351 Aé 4%_? ?g_? 2 t% 18_@ 2 ‘I%_
4 1 1 4 J 4 0
> #- 1-144 are re I' t d t = 145- I' t 194 326 4 310 178 503 342 185 4‘!2 362 171 1 357
: plicated twice -g are replicate a1 G 00 | 5 57 36317 Sos 3 :
- 83 E z 598 43 s17 oz 302 52
> latt.mat <- matrix(l:ndup, nrow = 12, ncol = 12) 2154 1 3% | 190 | S0 23 227 1 200 | 4 170 1 242 z
_ 24 SE% 2 -7 ‘G_Q 37 LT L - ‘ﬂ ..;l C an |
> blkl.lines <- sample((ndup+1):g, (g-ndup)/2) 25 852 | 381 | 282 167 336 1 1ed | 540 | 2 arr 137 7 03
1158 A A
> blk2.lines <- ((ndup+1):9)[!((ndup+1):g %in% blk:wgi ié i1 ;? 7 & tz [k -% : 2
- 1 £ 3 £ LD
> latt.lay <- fac.gen(list(Blocks = 2, WRows = 30, 53? i e e———s =25 Eﬁ ad ad
b 29 of 97
> latt.lay <- within(latt.lay, = 1 | T % -% A 35
_ 41 . 52 ' 38 ' ‘
+ Lines <- factor(c(latt.mat 31— ! 2 41 & , 59 B
- 0 2 4 7 Q 1 r
+ t(latt.mi & T 20 32 T4 o : PR
9- v 2 3 4 57 6! v 11 12 14
10 3 4 5_8 7 :‘ 0 A1 13_ 14
‘1|;: 1 23 35 :g g_g 71 95 7 :' :g‘l _i:
> #"## Randomize the initial design piHar {Jas 1 1oz [ for | fe2 | fes [ 169 [ 13 [ 175 [ 17 1 173 | 182
- - 15_ G 7 G 24q L k. "N CLT: G CL L 24 L 920 240
> latt.lay <- designRandomize(allocated = 16{ 246 | 247 | 248 | 2 2 251 | 255 | ; 2 2 264
. B A B L T 209 280 o cBl | 284 | 7 BT 488 1 ¢ 292
+ recipient = 19131 3 21 2 2 2 1 7
L 20{__3: 339 34 34 343 345 34 34 18 349 35 35
-+ nested.recipients = o £ 8 £ 13 £ ——f 3t 334
234 405 40¢ 407 40 409 410 411 413 4 417 423 424
+ seed = ( 244 _42¢ 43 43 433 435 436 447 44 5 446 . 449
2541 451 45 45 456 4 458 461 4 7 4 4 471
> latt.lay <- within(latt.lay, 271484149 § :;i 50 ‘-; ‘ g £ gy | 4ol | 4o
28 5 2 . . 2 X 2 2 233 523 538
+ Rows <- fac.combine(list(BIc 1338133+ 22+ 2071 281 220 | 2821 28 1 275 1273 276
1 2 3 4 5 6 7 8 1 12
Columns

This is a resolved, augmented design — the replicates of the duplicated Lines are in
different blocks and the unduplicated lines are added to the block design.



A field p-rep — setting variance parameters in od

v VvV VvV + + + + 4+ V V

o ~NO OB~ WDNBP

#"## Use od to generate the p-rep starting with the simple lattice - with units and autocorrelation

prepuarl.latt.od <- od(fixed

random

residual

permute

start.values

data

vp.table <- prepuarl.latt.od$vparameters.table

vp.table$value <- params
vp.table

Component Value

Lines

Rows

Columns

Columns:Blocks

units

Rows:Columns!IR
Rows:Columns!Rows!cor
Rows:Columns!Columns!cor

1.
.50
.10
.05
.50
.00
.60
-40

O OoOr O 0O O O

00

= ~ Blocks,
= ~ Lines + Rows + Columns/Blocks + units,

= ~ arl(Rows):arl(Colunns) == Note Rows used rather than

~ Lines, swap_= ~ Blocks, . ]

~ TRUE. Blocks:Rows: |

- latt.lay) arl requires a single factor;
the two terms are equivalent as

a random term.

swap restricts interchanges to
be within Blocks and so
ensures that the design remains
resolved.

34



L :s320|g
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4 e o
> prepuarl.latt.od <- od(fixed = ~ Blocks, E; :93 2 7 =§§ :fg 28 %:6: 2: 2 jgi 25 Je
- : 3 413 ] 524 92
+ random = ~ Lines + Rows + Cc {4 18 1 74 6 40 347 | 256 66 | 4 135 |
- E_B:% f 44 ;: 4 %79 > 2317 %‘9 3‘8‘ e 4 23—53
+ residual = ~ arl(Rows):arl(Col s{i7 1= : 341 | 472 | 4 ; 30 34 i77 | 346 | 29 |
: = B e e EE AR e Ee EmE=
+ permute = ~ Lines, swap = ~ E 2 - 457 75 | des 731 100
13: 8. 1 9 92 51 24 £4 f 278 1 4 - 88
+ G.param = vp.table, R.param = }iI-% 21240 12 214|488 1298 T 321 1 10 o
T 317 > a1 405 377 | dbe 46 107
+ maxit = maxit, search = se: ;|32 : 5 o 2 71492 | 501 | 136
_ e P 1 1 7 -0 - <"
+ data =1 att.lay) 21 {116 | 53 | 43 33 [ 449 | 36 3 25 247 | 485 [ 51
i 52 s EEE e e Ee m T
Fri Sep 6 16:52:46 2019 e - - —— S
Initial A-value = 1.026048 (576 A-equations; rank C 57¢ EE_ o ‘11%% %gg Ei :‘éfé; fé 2 ‘;'ii fﬂi i ;%g_
- m : 2 1 [; -
A-value after tabu loop 1 is 1.016726 L e e e
A-value after tabu loop 2 is 1.016552 S i 7 e T . - . e
31 _ 178 52 | 235 273 529 517 521 552 73 380 2 25 |
441 20 570 89 22 36: 17 257 557 9 297 63
514 29 134 243 1 504 3 154 4 77 8 51
6 1 167 268 470 419 544 54 22 14¢€ 86 32
BN 7 9 166 52 1 427 554 373 70
o ]85 —T—400—1 107 748 06|67 10743 | 135|451 | 32s T da—
A-value after tabu loop 49 i1s 1.016174 iz 136 ;_3 & ;;; 138 Eﬂé tca? 33215 é—?i ’% )
A-value after tabu loop 50 1s 1.016174 N T p7) 323 43 B2 a4 | 86 | 243 51T 317 £
: W LU e 6] e a0 e e B
Hash table size 2477 (I S < 803170 [80 | 807 |9
Final A-value after 50 iterations: 1.016174 I T 7 - T S 181382 226 328
_ 20 C5 575 540 ‘14 '5 "i 4 ?5 5 4'
> prepuarl.latt.lay <- prepuarl.latt.od$design e — 00 | 202 1 430 1 209 | 498 | 187 1 IS T
- 7 o o 5 O 13O O " . P 0
Note that all the border plots are duplicated g5 4o [ 4w g [t | das [ g8 | a7 [ | eis [ g6
Ln * th d t h T 7 s 1 7 A 0 - < 7 o
INnes,; tne same aoes Nnot OCcur wnen an X N ] 2 K 20
30 7IQ 2'8 1m’l 1?1 ﬁa 62 1 1?(‘ 1[] RIZ 3 'ﬁ 'R.7
1 2 3 4 5 6 7 8 9 10 1 12

RCBD is used as the starting design (in Prac).

Columns



Canonical analysis of the design: investigating Its
anatomy

m \Want to look at the relationships of the lines sources to the plots
sources.

m The plots sources:
Blocks + Rows|[Blocks] + Columns + Blocks#Columns +Rows#Columns[Blocks].

m The lines source: A is the harmonic mean of the efficiency factors.
Lines. M is the mean of the efficiency factors.
- . E is the minimum of the efficiency factors.
m Using dae: . ey
dforth is the number of efficiency factors equal to one.
Order is the number of unique efficiency factors.
> prepuarl.latt.canon <- designAnatomy(formulae = list(plot = ~ (Blocks + Rows)*Columns,
+ trt = ~ Lines),
+ data = prepuarl.latt.lay)

> summary(prepuarl. latt.canon,
+ which.criteria = c("aeff"”, "meff"”, "eeff"”, "order"™, "dfor')) 36



A field p-rep — anatomy

Summary table of the decomposition for plot & trt (based on adjusted quantities)

Source.plot dfl Source.trt df2 aefficiency mefficiency eefficiency order dforthog
Blocks 1 Lines 1 0.6000 0.6000 0.6000 1 0]
Rows[Blocks] 58 Lines 58 0.7849 0.8000 0.4840 58 o)
Columns 11 Lines 11 0.7713 0.7818 0.5731 11 o)
Blocks#Columns 11 Lines 11 0.8126 0.8182 0.6727 11 0
Rows#Columns[Blocks] 638 Lines 575 0.4135 0.8877 0.0061 82 494

Residual 63

The design i1s not orthogonal _ _
» Alot of information about some

> All of the plots sources are Lines contrasts in other than

orthogonal (no aliasing). Rows#Columns[Blocks] (plots).
A Is the harmonic mean of the efficiency factors. » Not a uniqgue decomposition, but
M is the mean of the efficiency factors. Rows#Columns[Blocks]

E is the minimum of the efficiency factors. decomposition Is. .
Concentrate on the last Lines

dforth is the number of efficiency factors equal to one. source, where all 575 Lines df are
Order is the number of unique efficiency factors. partially confounded. 37



A field p-rep — anatomy

Summary table of the decomposition for plot & trt (based on adjusted quantities)

Source.plot dfl Source.trt df2 aefficiency mefficiency eefficiency order dforthog
Blocks 1 Lines 1 0.6000 0.6000 0.6000 1 0
Rows[Blocks] 58 Lines 58 0.7849 0.8000 0.4840 58 0]
Columns 11 Lines 11 0.7713 0.7818 0.5731 11 0
Blocks#Columns 11 Lines 11 0.8126 0.8182 0.6727 11 0
Rows#Columns|[Blocks] 638 Lines 575 0.4135 0.8877 0.0061 82 494

Residual 63

<0.1 0.1-0.2 0.2-0.3 0.3-04 0405 0506 .. 1

23 21 17 12 I 1 494

A Is the harmonic mean of the efficiency factors. » Alot (86%) of orthogonal df in Plots.
M is the mean of the efficiency factors (the sum is the » But, alot of efficiencies close to 0 in
Fisher information for the design and is a component of Plots, which is to be expected for
(M,S optimality). for p-rep designs

. . —di 2
dforth is the number of efficiency factors equal to one. distorts A so M better" 38



The effect on the anatomy of assuming that
Blocks#Columns is zero

Summary table of the decomposition for plot & trt (based on adjusted quantities)

Source.plot dfl Source.trt df2 aefficiency mefficiency eefficiency order dforthog
Blocks 1 Lines 1 0.6000 0.6000 0.6000 1 o)
Rows[Blocks] 58 Lines 58 0.7849 0.8000 0.4953 58 o)
Columns 11 Lines 11 0.7729 0.7818 0.6024 11 0]
Blocks#Rows#Columns 649 Lines 575 0.5168 0.9033 0.0119 71 505
{ Residual 74 ]

The design is not orthogonal

m More lines information in Blocks#Rows#Columns and more Residual df.
m Still some information about Lines almost orthogonal to Blocks#Rows#Columns.
m AVPD = 1.014¢grc. (Minor change —was 1.016 @gr)
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Calculating the A-measure (AVPD) using
designAmeasures and mat.Vpredicts from dae

m The model arguments of the od call

> prepuarl.latt.od<- od(fixed ~ Blocks,

+ random ~ Lines + Rows + Columns/Blocks + units,
+ residual ~ arl(Rows):arl(Columns),

+ permute ~ Lines, ..)

m Corresponding designAmeasures call

> prepuarl.latt.lay$unit <- factor(l:nrow(prepuarl.latt.lay)) #factor for ASReml units

> (designAmeasures(mat.Vpredicts(target = ~ Lines -1,

. Gt _ 1 < Matches permute. Acin od call,

+ fixed = ~ Blocks, - . =

+ random = ~ Rows + Columns/Blocks + unit - 1,| minus Lines.

+ G = as.list(paramsfc(''g.BR", "g.C", "g.BC", "g.u'")1),

= R = kronecker(mat.arl(params[ rho.R'], r), .

+ \ mat.arl(params["rho.C"], c)), ASHWVp-table-

+ design = prepuarl.latt.lay)))[]11]]

[1] 1.016151 As for
residual.

m To calculate without Columns:Blocks, drop “/Blocks” and “g.BC”.
m What happens if arl and nugget variance are dropped from od call? 4



Comparing spatial and nonspatial designs

Nonspatial 0.988486 1.018665 0.5168 0.8877 0.0264 494
Spatial 0.988857 1.016151 0.4180 0.8877 0.0080 494

m Both designs are equally suitable for nonspatial data.

m The difference between the designs for spatial data is very small.
The only differences are in aefficiency and eefficiency.

The nonspatial design is slightly better because the range of the efficiency
factors is less.

41



Comparing canonical analysis and A-measures
(AVPD)

m Canonical analysis

Shows the anatomy of the design: where the information is in the design and
the nonorthogonality that is present.

Do not need to specify the variance parameter values and not dependent on
them.

Does not account for spatial correlation and nonlinear trends.

Limited relationship with AVPD

o When target is fixed, variance-components-only model and equally replicated, aefficiency
IS directly related to AVPD, otherwise it is not.

Only useful for characterizing a design, rather than searching for an optimal
design.

m AVPD

Is a measure of the precision in the experiment that gives equal weight to all
contrasts, and is used by od, but is not the same as PEV.

Need to specify the variance parameter values because depends on them.
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2.2 Partially replicated designs in two phases

m Smith et al. (2006) give examples of experiments that employ designs
In which both phases employ partially replicated designs in both
phases:

They are dubbed p/g-rep designs.
That Is, p% of the lines are replicated in the first phase and g% of the plots
with unreplicated lines are replicated in the second phase.

m We will produce a design for a an experiment with p = 0.25 and g =
0.10.

Previous example is a p-rep design for a field experiment, with p = 0.25.
It will be extended to include a milling phase.
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The first phase desigh— a p-rep field experiment

(Cullis, Smith &

m 576 Lines on 60 rows x 12 columns. Coombes, 2006)

Dashed line because
: 2 Blocks Lines are allocated to
576 Lines--+- 30 WRows in B
12 Columns the plots factors, but

576 lines not using classic
randomization.

720 plots

m 144 Lines are to be duplicated — p = 0.25.
m A spatially optimized design was used to allocate lines to plots.

m Suppose that samples of grain from the field experiment are to be
taken to the laboratory for milling and analysis in the laboratory.

After the field experiment 370 lines have been identified for processing in the
milling phase.
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Sampling plots for the milling (second) phase

(Smith, Lim & Cullis, 2006)
2 Blocks ~4__
576 Lines --4- 30 WRows inB - ::@‘——ﬁ 407 Plots }

12 Columns g 1,2 SamplesinP

576 lines 720 plots 448 samples
0 m Take 333 unduplicated and 37 duplicated
oz aE/EE o azumf B Booax lines on to milling phase

41 204 1

(= 370 lines on 407 plots).

m Of the 333 unduplicated Lines, 41 are
N duplicated (2 samples required) in the
o milling phase — q = 0.10 (of plots).

[[]+
2 g

1 's)}o0|g

KRN

419

m \What will happen here as compared to
previous design?

» Answer: Blocks, Rows and Columns will no
longer be orthogonal — unit terms are
partially aliased (cf. confounding).

— % » Also, Lines confounding will change. 45

2 3 4 5 6 7 8 9 10 11 12
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Presenter
Presentation Notes
Hopefully, you are still with me. But take a deep breath as we tackle the p/q-rep two-phase design.
q is the proportion of the 407 plots


First-phase anatomy for the fraction
(without Blocks#Columns)

> summary(designAnatomy(formullae = list(plot = ~ ((Blocks/WRows)*Cols)/Samp,
+ trt = ~ Lines),
- keep.order = TRUE, data = layout),

- which.criteria = c('ae", "me', "ee', "dfor'))

Table of (partial) aliasing between sources derived from the same formula

Source df Alias In aefficiency mefficiency eefficiency dforthog
Cols 11 Blocks plot 0.9992 0.9992 0.9908 10
Cols 11 WRows[Blocks] plot 0.9230 0.9249 0.8374 o)
Blocks#Cols 22 WRows|[Blocks] plot 0.9210 0.9240 0.8151 o)
m The terms are fitted in the order Blocks, WRows[Blocks] and Columns (see
next slide).

m Eleven df for Columns is aliased with Blocks and WRows[Blocks] but 92.3%
of the information is retained.

m The analysis will depend on whether Columns is fitted first or not, but not greatly
given the high aefficiency. a6



First-phase anatomy for the fraction

Source.plot dfl Source.trt df2 aefficiency mefficiency eefficiency dforthog
Blocks 1 Lines 1 0.8348 0.8348 0.8348 0
WRows[Blocks] 58 Lines 58 0.7742 0.9013 0.0950 26
Cols 11 Lines 11 0.8347 0.8760 0.5187 0
Blocks#Cols 11 Lines 11 0.8231 0.8695 0.4784 0
WRows#Cols[Blocks] 325 Lines 325 0.4602 0.9129 0.0177 288

Samp[BTocks:WRows:Cols] 41

m Not unique, but the WRows#Cols[Blocks] strata is.

m Of the 369 Lines df, 325 are estimable in WRows#Cols[Blocks], including 288
(78%) only there.

m There are 44 Lines df estimable elsewhere, with 26 of these orthogonally

confounded with WRows[Blocks].
Thus for Lines fixed, the design is disconnected for all plot terms fixed except the last two.
Would be connected if all plots terms (except Blocks) random (needed for od).

m The mefficiency for the 369 Lines df in WRows#Cols[Blocks] is 0.8040 (=
0.9129 x 325/ 369).

m Samp|[Blocks:WRows:Cols] (Error) has full 41 df.



Milling-phase allocation for the p/g-rep design

m There are 448 (407 + 41) samples and so 448 time-locations for milling required:
Take 16 days divide them into 2 intervals.
Each day there are 28 time-locations for milling.

m Samples are assigned to locations using two pseudofactors, S, and Py:
The 448 samples are assigned to the 2 levels of S; so that milling duplicates have different
levels and, as far as is possible, so do plots from different blocks;
The 224 plots in each level of S; are assigned to the 224 levels of the pseudofactor P, in

Rows-Columns order:

o The 224 plots are comprised of those (i) for the 41 lines that are milling-duplicated, (ii) from the same block for
the 37 lines that are field duplicated, and (iii) for 183 lines that are from the same block as (ii) or rows nearby.

S, is randomized to Intervals and P, is systematically allocated to the Days-Locations
combinations, the design being nonorthogonal

/ 12 Columns ~__ 224 P,—-» 8 Daysin |
576 Lines —{- 30 WRows in B--FXD---p 407 Plots 28 Locations
\\ 2 Blocks -~ 1,2 SamplesinP Intervals

576 lines 720 plots 448 samples 448 locations ,g




Check properties of the multiphase design

> layout <- ph2sys.lay
> names(layout) [match(c(*"Intervals', "Locations', "Columns',"Samples'™), names(layout))] <-
+ c(""Int", "Locn", "Cols","Samp™™)

> designTwophaseAnatomies(formulae = list(lab = ~ (Int/Days)*Locn,

+ plot = ~ ((Blocks/WRows)*Cols)/Samp,
+ trt = ~ Lines),

+ which.criteria = c("ae', "me", "ee'", "dfor"),

+ keep.order = TRUE, data = layout)

m Note three formulae supplied.
m Have used designTwophaseAnatomies and this will produce the

four species of designs for a two-phase design:

The first-phase design for the fraction is not used for the analysis of first-phase
responses (e.g. grain yield).
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Anatomy of the second-phase design

Summary table of the decomposition for lab & plot (based on adjusted quantities)

Source. lab dfl Source.plot df2 aefficiency mefficiency eefficiency dforthog A lot of
Int 1 Blocks 1 0.6386 0.6386 0.6386 0 Blocks
[Days[lnt] 14 Blocks 1 0.2827 0.2827 0.2827 0 confounded
WRows[Blocks] 13 0.6963 0.7831 0.2458 0 here.
Locn 27 Blocks 1 0.0061 0.0061 0.0061 0
WRows[Blocks] 26 0.0130 0.0974 0.0023 0
Int#Locn 27 Blocks 1 0.0037 0.0037 0.0037 0
WRows[Blocks] 26 0.0140 0.0903 0.0027 0
Days#Locn[Int] 378 Blocks 1 0.0689 0.0689 0.0689 0
( WRows [Blocks] 58 0.2760 0.7074 0.0234 0]
. Cols 11 0.8298 0.8336 0.7439 0|
Blocks#Cols 11 0.8251 0.8304 0.7058 ‘s‘\(L
/’ WRows#Cols[Blocks] 297 0.4358 0.8991 0.0142 256 \

Blocks#Cols mainly
confounded here.

The estimable df for Wrows#Cols[Blocks]

has gone from 638 (first-phase) to 325

(fraction) to 297.

Much of WRows[Blocks]

and Cols confounded here.
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Anatomy of the two-phase design

Source. lab dfl Source.plot df2 Source.trt df3 aefficiency mefficiency eefficiency dforthog
Int 1 Blocks 1 Lines 1 0.6696 0.6696 0.6696 0
Days[Int] 14 Blocks 1 Lines 1 0.6679 0.6679 0.6679 0
WRows[Blocks] 13 Lines 13 0.8261 0.8449 0.5362 0
Locn 27 Blocks 1 Lines 1 0.8062 0.8062 0.8062 0
WRows[Blocks] 26 Lines 26 0.8135 0.8248 0.6160 0
Int#Locn 27 Blocks 1 Lines 1 0.8050 0.8050 0.8050 0]
WRows[Blocks] 26 Lines 26 0.8187 0.8279 0.6432 0

fBays#Locn[lnt] 378 Blocks 1 Lines 1 0.4723 0.4723 0.4723 0 )
WRows[Blocks] 58 Lines 58 0.7908 0.8443 0.3224 0
Cols 11 Lines 11 0.8309 0.8597 0.5507 0
Blocks#Cols 11 Lines 11 0.8304 0.8587 0.5412 0]

\_ WRows#Cols[Blocks] 297 Lines 297 0.2940 0.8207 0.0101 219 )

B Just 297 of the total 369 df for Lines is estimable from Wrows#Cols[Blocks].

B Inall 66.1 % (0.8207 * 297 / 369) of the Lines information is estimable here.

B Alot of Lines information is confounded with the variation from other field and
milling phase sources of variation.
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Substituting a linear Locations term

> #"## Look at the effect of substituting a linear Columns term for the Column variation term

i ph2sys.lin.canon <- designAnatomy(formulae list(lab I;:sziz?Lﬂ xl,_ocnhk~~~~~~~ LhweEU'yern1for
+ plot = ~ [Rows] s)/Sa Locations.

+ trt = ~ Lines), ] ]

+ keep.order = TRUE, data = layout) Pool to Slmp“fy
> print(summary(ph2sys.lin.canon, which.criteria = c("ae", "me", "ee', "dfor'™))) the analysis.

Summary table of the decomposition for lab, plot & trt (based on adjusted quantities)

Source. lab dfl Source.plot df2 Source.trt df3 aefficiency mefficiency eefficiency dforthg
Int:Days 15 Rows 15 Lines 15 0.7852 0.8214 0.4469 0
xLocn 1 Rows 1 Lines 1 0.8095 0.8095 0.8095 0
(Int:Days)#Locn 431 Rows 59 Lines 59 0.7021 0.8452 0.0802 13
Cols 11 Lines 11 0.8257 0.8659 0.5129 0
Rows#Cols 333 Lines 333 0.3245 0.8903 0.0066 283

[ Samp[Rows:Cols] 28 1.0000 1.0000 1.0000 284]

B Just 333 of the total 638 df for Rows#Cols and of the total 369 df for Lines is estimable here.
B Now 80.3% (0.8903 * 333 / 369) of the Lines information is estimable here (cf. 66.1% &

0.8207 with R#C included).
B Also 28 of the 41 df for Samples[Rows:Cols] (Error df) is available. 52




Summary

m Here, dividing the factors based on allocation of factors results In
three sets of factors: only ever allocated; allocated and recipient; and
only ever recipient.

m For a two-phase experiment there are four species of design: first-
phase; second-phase; cross-phase; two-phase.

m The same methods of design selection apply, but need to consider
three designs and how they combine.

m Again, designRandomize can be used to randomize the experiment
and designAnatomy can be used to check the properties of the
design, irrespective of the nonorthogonality and the number of tiers
e.g. p/g-rep designs.

can be slow when the number of observations is large (several hundreds).
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